A Review of Lamellar Eutectic Morphologies for Enhancing Thermoelectric and Mechanical Performance of Thermoelectric Materials

Springer Science and Business Media LLC - Tập 102 - Trang 237-279 - 2022
Surafel Shiferaw Legese1, Femi Emmanuel Olu1
1Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Tóm tắt

We present in this review how the existence of lamellar eutectic morphologies in different classes of thermoelectric systems has been explored to enhance the thermoelectric and mechanical performance of such systems. Following a brief discussion on the physics of thermoelectricity, the case for using eutectic morphologies to achieve similar thermoelectric performance compared to those reported in multilayer thin-film and superlattice, was presented. This was followed by the presentation of eutectic morphologies in different classes of thermoelectric systems from traditional chalcogenide to half-Heusler and high-entropy alloys. Eutectic lamellar can be quickly produced in large quantities via traditional metallurgy routes that are cost-effective and can be scaled compared to other synthesis routes. As this review shows, eutectic morphologies could play a double role in simultaneously improving a thermoelectric device's thermoelectric and mechanical performance. These devices are of macroscale dimensions and require some measure of good energy conversion efficiencies and mechanical stability simultaneously.

Tài liệu tham khảo

Bian Q (2020) Waste heat: the dominating root cause of current global warming. Environ Syst Res 9(1):8 Bian Q (2019) The nature of climate change- equivalent climate change model’s application in decoding the root cause of global warming. Int J Environ Clim Change 9(12):801–822 Rowe DM (2005) Thermoelectric handbook. CRC Press, Boca Raton, USA Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science. Curr Opin Colloid Interface Sci 14(4):226–235 Scherrer S, Scherrer H (2005) Thermoelectric properties of BismuthAntimony telluride solid solutions. In: Rowe DM (ed) Thermoelectrics handbook. CRC Press, pp 27-1–27-19 Sang ILK, Kyunghan A, Dong-Hee Y, Sungwoo H, Hyun-Sik K, Sang Mock L, Kyu Hyoung L (2011) Enhancement of seebeck coefficient in Bi0.5Sb1.5Te3 with high-density tellurium nanoinclusions. Appl Phys Express 4(9):801 Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602 Hicks LD, Harman TC, Dresselhaus MS (1993) Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett 63(23):3230–3232 Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731 Harman TC, Walsh MP, Laforge BE, Turner GW (2005) Nanostructured thermoelectric materials. J Electron Mater 34(5):L19–L22 Faleev SV, Leonard FO (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77(21):214304 LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35 Case ED (2012) Thermal fatigue and waste heat recovery via thermoelectrics. J Electron Mater 41(6):1811–1819 Simard JM, Vasilevskiy D, Turenne S (2003) In Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi1-xSbx)2(Te1-ySey)3 alloys. In: Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No.03TH8726), 17–21 Aug. 2003; 2003; pp 13–18. Tiwary CS, Pandey P, Sarkar S, Das R, Samal S, Biswas K, Chattopadhyay K (1793) Five decades of research on the development of eutectic as engineering materials. Progress Mater Sci 123:100793 Chanda B, Potnis G, Jana PP, Das J (2020) A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd 827:226 Kurz W, F. D, (1984) Fundamentals of solidification. Scientific.Net Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial J-P, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053 Rowe DM, Shukla VS (1981) The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J Appl Phys 52(12):7421–7426 Rowe DM, Shukla VS, Savvides N (1981) Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys. Nature 290(5809):765–766 Chadwick GA (1963) Eutectic alloy solidification. Prog Mater Sci 12:99–182 Tiwary CS, Kashyap S, Chattopadhyay K (2014) Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al–Cu–Ni eutectic system. Scripta Mater 93:20–23 Cantor B, May GJ, Chadwick GA (1973) The tensile fracture behaviour of the aligned Al-Al3Ni and Al-CuAl2 eutectics at various temperatures. J Mater Sci 8(6):830–838 Cantor B, Chadwick GA (1974) The growth crystallography of unidirectionally solidified Al-Al3Ni and Al-Al2Cu eutectics. J Cryst Growth 23(1):12–20 Askeland DRP, P. P, (2003) The science and engineering of materials, 4th edn. Thomson, Pacific Grove Elliott R (1983) Eutectic Solidification Processing Crystalline and Glassy Alloys. Butterworths & Co, London Callaway J, von Baeyer HC (1960) Effect of point imperfections on lattice thermal conductivity. Phys Rev 120(4):1149–1154 Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131(5):1906–1911 Chen L, Liu R, Shi X (2021) Chapter 2—strategies to optimize thermoelectric performance. In: Chen L, Liu R, Shi X (eds) Thermoelectric materials and devices. Elsevier, pp 19–50 Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459–539 Vaqueiro P, Powell AV (2010) Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20(43):9577–9584 Mukherjee S, Femi OE, Chetty R, Chattopadhyay K, Suwas S, Mallik RC (2018) Microstructure and thermoelectric properties of Cu2Te-Sb2Te3 pseudo-binary system. Appl Surf Sci 449:805–814 Wu HJ, Foo WJ, Chen S-W, Jeffrey G (2012) Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials. Appl Phys Lett 101(2):023107 Liebmann WK, Miller EA (1963) Preparation phase-boundary energies, and thermoelectric properties of InSb-Sb Eutectic alloys with ordered microstructures. J Appl Phys 34(9):2653–2659 Yang B, Li S, Li X, Feng S, Liu Z, Zhong H (2018) Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys. J Mater Sci: Mater Electron 29(22):18949–18956 Ikeda T, Haile SM, Ravi VA, Azizgolshani H, Gascoin F, Snyder GJ (2007) Solidification processing of alloys in the pseudo-binary PbTe-Sb2Te3 system. Acta Mater 55(4):1227–1239 Femi OE, Elangovan H, Mukherjee S, Tripathi S, Chattopadhyay K (2021) Thermoelectric properties of BiSbTe-type alloys prepared by chill-casting and cryo-milling. Mater Chem Phys 260:124116 Bhardwaj A, Misra DK (2014) Improving the thermoelectric performance of TiNiSn half-Heusler via incorporating submicron lamellae eutectic phase of Ti70.5Fe29.5: a new strategy for enhancing the power factor and reducing the thermal conductivity. J Mater Chem A 2(48):209880–220989 Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T (2014) A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci Rep 4(1):6200 Mikami M, Guilmeau E, Funahashi R, Chong K, Chateigner D (2005) Enhancement of electrical properties of the thermoelectric compound Ca3Co4O9 through use of large-grained powder. J Mater Res 20(9):2491–2497 Ben-Yehuda O, Shuker R, Gelbstein Y, Dashevsky Z, Dariel MP (2007) Highly textured Bi2Te3-based materials for thermoelectric energy conversion. J Appl Phys 101(11):113707 Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821 Cao YQ, Zhao XB, Zhu TJ, Zhang XB, Tu JP (2008) Syntheses and thermoelectric properties of Bi2Te3-Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl Phys Lett 92(14):143106 Liu D, Dreβler C, Seyring M, Teichert S, Rettenmayr M (2018) Reduced thermal conductivity of Bi-In-Te thermoelectric alloys in a eutectic lamellar structure. J Alloy Compd 748:730–736 Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50(11):11RH02 Luo Y, Yang J, Jiang Q, Li W, Fu L, Xiao Y, Zhang D, Zhou Z, Cheng Y (2016) Effect of cooling rate on the thermoelectric and mechanical performance of Bi0.5Sb1.5Te3 prepared under a high magnetic field. Intermetallics 72:62–68 Olu FE, Hong S-J, Chattopadhyay K (2020) Mechanical and thermoelectric properties of eutectic composite (Bi, Sb)2Te3/Te thermoelectric material. Trans Indian Inst Metals 73:1147–1155 Xiao Y, Yang J, Li G, Liu M, Fu L, Luo Y, Li W, Peng J (2014) Enhanced thermoelectric and mechanical performance of polycrystalline p-type Bi0.5Sb1.5Te3 by a traditional physical metallurgical strategy. Intermetallics 50:20–27 Femi OE, Akkiraju K, Murthy BS, Ravishankar N, Chattopadhyay K (2016) Effect of processing route on the bipolar contribution to the thermoelectric properties of n-type eutectic Bi22.5Sb7.5Te70 alloy. J Alloys Compd 682:791–798 Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X (2017) Investigation on the microstructure and thermoelectric performance of magnetic ions doped Bi0.5Sb1.5Te3 solidified under a magnetostatic field. Acta Mater 127:185–191 Gao N, Zhu B, Wang X-Y, Yu Y, Zu F-Q (2018) Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi0.4Sb1.6Te3 alloy via liquid-state manipulation. J Mater Sc 53(12):9107–9116 Yu Y, Zhu B, Wu Z, Huang Z-Y, Wang X-Y, Zu F-Q (2015) Enhancing the thermoelectric performance of free solidified p-type Bi0.5Sb1.5Te3 alloy by manipulating its parent liquid state. Intermetallics 66:40–47 Femi OE, Ravishankar N, Chattopadhyay K (2016) Microstructure evolution and thermoelectric properties of Te-poor and Te-rich (Bi, Sb)2Te3 prepared via solidification. J Mater Sci 51(15):7254–7265 Kohri H, Chen L, Nishida IA, Hirai T (1998) In effect of microstructure and composition on thermoelectric properties of Te-rich Sb2Te3. In: XVII international conference on thermoelectrics: proceedings ICT98 (Cat. No. 98TH8365), pp 178–181. https://doi.org/10.1109/ICT.1998.740347 Thu Huong N, Setou Y, Nakamoto G, Kurisu M, Kajihara T, Mizukami H, Sano S (2004) High thermoelectric performance at low temperature of Bi1.8Sb0.2Te3.0 grown by the gradient freeze method from Te-rich melt. J Alloys Compd 368(1):44–50 Miller GR, Li C-Y (1965) Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J Phys Chem Solids 26(1):173–177 Chen ZG, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: Current research and future challenge. Progress Nat Sci Mater Int 22(6):535–549 Drabble JR, Goodman CHL (1958) Chemical bonding in bismuth telluride. J Phys Chem Solids 5(1–2):142–144 Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, Tang X, Uher C, Snyder GJ (2015) Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 5(5):1401391 Custódio MCC, Hernandes AC (1999) Tellurium-rich phase in n-type bismuth telluride crystals grown by the Bridgman technique. J Cryst Growth 205(4):523–530 Yamashita O, Tomiyoshi S, Makita K (2003) Bismuth telluride compounds with high thermoelectric figures of merit. J Appl Phys 93(1):368–374 Wu Y, Yu Y, Zhang Q, Zhu T, Zhai R, Zhao X (2019) Liquid-Phase Hot Deformation to Enhance Thermoelectric Performance of n-type Bismuth-Telluride-Based Solid Solutions. Adv Sci 6(21):1901702 Zhu B, Yu Y, Wang X-Y, Zu F-Q, Huang Z-Y (2017) Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 semiconductor by manipulating its parent liquid state. JMateri Sci 52(14):8526–8537 Wang Z-L, Akao T, Onda T, Chen Z-C (2016) Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloy Compd 684:516–523 Yu Y, Wu Z, Cojocaru-Mirédin O, Zhu B, Wang X-Y, Gao N, Huang Z-Y, Zu F-Q (2017) Dependence of solidification for Bi2Te3−xSex alloys on their liquid states. Sci Rep 7(1):2463 Lange PW (1939) Ein Vergleich zwischen Bi 2 Te 3 und Bi 2 Te 2 S. Naturwissenschaften 27:133 Nakajima S (1963) The crystal structure of Bi2Te3−xSex. J Phys Chem Solids 24(3):479–485 Delaviginette P, Amelinckx S (1960) Dislocation nets in bismuth and antimony tellurides. Philos Mag 5(55):729–744 Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y, Xin J (2017) New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance. J Mater Chem A 5(10):5163–5170 Norizan MN, Ohishi Y, Kurosaki K, Muta H (2019) Fabrication and thermoelectric property of Bi0.88Sb0.12/InSb eutectic alloy by melt spinning and spark plasma sintering. Mater Trans 60(6):1072–1077 Kanatzidis MG (2010) Nanostructured thermoelectrics: the new paradigm? Chem Mater 22(3):648–659 Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114 Lensch-Falk JL, Sugar JD, Hekmaty MA, Medlin DL (2010) Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloy Compd 504(1):37–44 Ikeda T, Toussaint MB, Bergum K, Iwanaga S, Jeffrey Snyder G (2011) Solubility and formation of ternary Widmanstätten precipitates in PbTe in the pseudo-binary PbTe–Bi2Te3 system. J Mater Sci 46(11):3846–3854 Wu H-J, Foo W-J, Gierlotka W, Chen S-W, Snyder GJ (2013) The microstructure, liquidus projection and thermodynamic modeling of thermoelectric Ag–Pb–Te system. Mater Chem Phys 141(2):758–767 Wu HJ, Chen SW, Ikeda T, Snyder GJ (2012) Formation of ordered nano-wire microstructures in thermoelectric Pb–Ag–Sb–Te. Acta Mater 60(3):1129–1138 May AF, Toberer ES, Saramat A, Snyder GJ (2009) Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Phys Rev B 80(12):125205 Li JQ, Li LF, Song SH, Liu FS, Ao WQ (2013) High thermoelectric performance of GeTe–Ag8GeTe6 eutectic composites. J Alloy Compd 565:144–147 Yang SH, Zhu TJ, Sun T, He J, Zhang SN, Zhao XB (2008) Nanostructures in high-performance (GeTe)x(AgSbTe2)100–x thermoelectric materials. Nanotechnology 19(24):245707 Charoenphakdee A, Kurosaki K, Muta H, Uno M, Yamanaka S (2008) Reinvestigation of the thermoelectric properties of Ag8GeTe6. Phys Status Solidi (RRL) Rapid Res Lett 2(2):65–67 Gelbstein Y, Dado B, Ben-Yehuda O, Sadia Y, Dashevsky Z, Dariel MP (2010) High thermoelectric figure of merit and nanostructuring in bulk p-type Gex(SnyPb1−y)1−xTe alloys following a spinodal decomposition reaction. Chem Mater 22(3):1054–1058 Levin EM, Cook BA, Harringa JL, Budko SL, Venkatasubramanian R, Schmidt-Rohr K (2011) Analysis of Ce- and Yb-doped TAGS-85 materials with enhanced thermoelectric figure of merit. Adv Funct Mater 21(3):441–447 Sootsman JR, He J, Dravid VP, Li C-P, Uher C, Kanatzidis MG (2009) High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTe–Ge and PbTe–Ge1−xSix eutectic and hypereutectic composites. J Appl Phys 105(8):083718 Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Mater 56(20):5954–5963 Gelbstein Y, Dashevsky Z, Dariel MP (2008) The search for mechanically stable PbTe based thermoelectric materials. J Appl Phys 104(3):033702 Liu J, Wang X, Peng LJI (2013) Effect of annealing on thermoelectric properties of eutectic PbTe Sb2Te3 composite with self-assembled lamellar structure. Intermetallics 41:63–69 Bergman DJ, Fel LG (1999) Enhancement of thermoelectric power factor in composite thermoelectrics. J Appl Phys 85(12):8205–8216 Tian YL, Kraft RW (1987) Mechanisms of pearlite spheroidization. Metall Trans A 18(8):1403–1414 Rowe DME (1995) CRC handbook of thermoelectrics, 1st edn. CRC Press, Boca Raton Pei Y, Wang H, Gibbs ZM, LaLonde AD, Snyder GJ (2012) Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater 4(9):e28–e28 Zhang Y, Wu L, Zhang J, Xing J, Luo J (2016) Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Mater 111:202–209 Kuliev R, Krestovnikov A, Glazov V (1969) Phase equilibria and intermolecular interactions in systems formed by copper and antimony chalcogenides. Russ J Phys Chem 43:1721 Da Silva JLF, Wei S-H, Zhou J, Wu X (2007) Stability and electronic structures of CuxTe. Appl Phys Lett 91(9):091902 He Y, Zhang T, Shi X, Wei S-H, Chen L (2015) High thermoelectric performance in copper telluride. NPG Asia Mater 7(8):e210–e210 Mukherjee S, Aramanda SK, Legese SS, Riss A, Rogl G, Femi OE, Bauer E, Rogl PF, Chattopadhyay K (2021) Anisotropy of microstructure and its influence on thermoelectricity: the case of Cu2Te–Sb2Te3 eutectic. ACS Appl Energy Mater 4(10):11867–11877 Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11(5):422–425 Page A, Poudeu PFP, Uher C (2016) A first-principles approach to half-Heusler thermoelectrics: accelerated prediction and understanding of material properties. J Materiom 2(2):104–113 Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P (2016) Mechanical properties of half-Heusler alloys. Acta Mater 107:178–195 Chen S, Ren Z (2013) Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater Today 16(10):387–395 Zhu H, Mao J, Li Y, Sun J, Wang Y, Zhu Q, Li G, Song Q, Zhou J, Fu Y, He R, Tong T, Liu Z, Ren W, You L, Wang Z, Luo J, Sotnikov A, Bao J, Nielsch K, Chen G, Singh DJ, Ren Z (2019) Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat Commun 10(1):270 Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93 Lu Y, Dong Y, Jiang L, Wang T, Lu Y, Zhang Y (2015) A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17:2355–2366 Sathiaraj GD, Ahmed MZ, Bhattacharjee PP (2016) Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloy Compd 664:109–119 Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765 Lucas MS, Wilks GB, Mauger L, Muñoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100(25):251907 Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Zhijun W, Jie JC, Cao Z, Ruan HH, Lu Y (2014) A Promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200 Han K, Jiang H, Huang T, Wei M (2020) Thermoelectric properties of CoCrFeNiNbx eutectic high entropy alloys. Curr Comput-Aided Drug Des 10(9):762 Jiang H, Jiang L, Qiao D, Lu Y, Wang T, Cao Z, Li T (2017) Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J Mater Sci Technol 33(7):712–717 Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42 Yang B, Li S, Li X, Wang Y, Zhong H, Feng S (2019) Microstructure and enhanced thermoelectric performance of Te–SnTe eutectic composites with self-assembled rod and lamellar morphology. Intermetallics 112:106499 Yang B, Li S, Li X, Liu Z, Zhong H, Li X, Feng S (2021) Nanostructured Te-SnTe eutectic composites with enhanced thermoelectric performance. J Alloys Compd 860:158245 Yang B, Li S, Li X, Liu Z, Zhong H, Li X, Songke F (2020) Nanostructured Te-SnTe eutectic composites with enhanced thermoelectric performance. J Alloys Compd 860:158245 Hong M, Wang Y, Xu S, Shi X, Chen L, Zou J, Chen ZJNE (2019) Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy 60:1–7 Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H (2016) The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater Lett 164(C):344–347 Zhao L-D, Zhang B-P, Li J-F, Zhou M, Liu W-S, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloy Compd 455(1):259–264 Kauzlarich SM, Brown SR, Jeffrey Snyder G (2007) Zintl phases for thermoelectric devices. Dalton Trans 21:2099–2107 Souda D, Shimizu K, Ohishi Y, Muta H, Yagi T, Kurosaki K (2020) High thermoelectric power factor of Si–Mg2Si nanocomposite ribbons synthesized by melt spinning. ACS Appl Energy Mater 3(2):1962–1968 Levin EM, Hanus R, Cui J, Xing Q, Riedemann T, Lograsso TA, Schmidt-Rohr K (2015) Phase analysis and determination of local charge carrier concentration in eutectic Mg2Si–Si alloys. Mater Chem Phys 158:1–9 Chen HY, Savvides N, Dasgupta T, Stiewe C, Mueller E (2010) Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures. Phys Status Solidi A 207(11):2523–2531 Chen HY, Savvides N (2010) Eutectic microstructure and thermoelectric properties of Mg2Sn. J Electron Mater 39(9):1792–1797 Chen HY, Savvides N (2009) Microstructure and thermoelectric properties of n- and p-type doped Mg2Sn compounds prepared by the modified Bridgman method. J Electron Mater 38(7):1056–1060 Hauser JJ (1975) Conduction in amorphous Mg2X compounds (X= Ge and Sn). Phys Rev B 11(10):3860–3866 LaBotz RJ, Mason DR (1963) The thermal conductivities of Mg2Si and Mg2Ge. J Electrochem Soc 110(2):121