Một Kết Quả Về Độ Kết Nối Tổng Quát 3 Của Một Đồ Thị Và Đồ Thị Đường Thẳng Của Nó

Yinkui Li1,2, Yaping Mao3
1Center for Applied Mathematics, Tianjin University, Tianjin, People’s Republic of China
2Department of Mathematics, Qinghai Nationalities University, Xining, People’s Republic of China
3Department of Mathematics, Qinghai Normal University, Xining, People’s Republic of China

Tóm tắt

Độ kết nối tổng quát $$\kappa _k(G)$$ của một đồ thị G, được giới thiệu bởi Hager (J Comb Theory 38:179–189, 1985) là một sự tổng quát của độ kết nối cổ điển $$\kappa (G)$$ với $$\kappa _2(G)=\kappa (G)$$. Trong bài báo này, chúng tôi xây dựng các đồ thị để chứng minh rằng với mọi cặp số nguyên m và $$n(1

Từ khóa


Tài liệu tham khảo

Bauer, D., Tindell, R.: Graphs with prescribed connectivity and line graph connectivity. J. Graph Theory 3, 393–395 (1979) Bondy, J.A., Murty, U.S.R.: Graph Theory, GTM 244. Springer (2008) Capobianco, M., Molluzzo, J.: Examples and counterexamples in Graph Theory. North-Holland, Amsterdam (1978) Chartrand, G., Kappor, S.F., Lesniak, L., Lick, D.R.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq 2, 1–6 (1984) Chartrand, G., Okamoto, F., Zhang, P.: Rainbow trees in graphs and generalized connectivity. Networks 55(4), 360–367 (2010) Chartrand, G., Stewart, M.: The connectivity of line graphs. Math. Ann. 182, 170–174 (1969) Hager, M.: Pendant tree-connectivity. J. Combin. Theory 38, 179–189 (1985) Li, X., Mao, Y.: Generalized Connectivity of Graphs. Springer (2016) Li, H., Li, X., Mao, Y., Sun, Y.: Note on the generalized connectivity. Ars Combin. 114, 193–202 (2014) Li, H., Li, X., Mao, Y., Yue, J.: Note on the spanning-tree packing number of lexicographic product graphs. Discrete Math. 338(5,6), 669–673 (2015) Li, H., Li, X., Sun, Y.: The generalized \(3\)-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. 14(1), 43–54 (2012) Li, S., Li, W., Li, X.: The generalized connectivity of complete bipartite graphs. Ars Combin. 104, 65–79 (2012) Li, S., Li, W., Li, X.: The generalized connectivity of complete equipartition \(3\)-partite graphs. Bull. Malays. Math. Sci. Soc. 37, 103–121 (2014) S. Li, W. Li, Y. Shi, H. Sun, On minimally \(2\)-connected graphs with generalized connectivity \(\kappa _{3}=2\), J. Comb. Optim. in press Li, S., Li, X.: Note on the hardness of generalized connectivity. J. Combin. Optimization 24, 389–396 (2012) Li, S., Li, X., Zhou, W.: Sharp bounds for the generalized connectivity \(\kappa _3(G)\). Discrete Math. 310, 2147–2163 (2010) Li, S., Li, X., Shi, Y.: Note on the complexity of deciding the rainbow(vertex-) connectedness for bipartite graphs. Appl. Math. Comput. 258, 155–161 (2015) X. Li, Y. Mao, On extremal graphs with at most \(\ell \) internally disjoint Steiner trees connecting any \(n-1\) vertices, Graphs Combin., in press Li, X., Mao, Y.: The generalized \(3\)-connectivity of lexicographical product graphs. Discrete Math. Theor. Comput. Sci. 16(1), 339–354 (2014) Okamoto, F., Zhang, P.: The tree connectivity of regular complete bipartite graphs. J. Combin. Math. Combin. Comput. 74, 279–293 (2010) West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, (2001)