A Result of Rigidity for Ricci-Flat Warped Products

Ilton Menezes1, Paula Correia2, Romildo Pina2
1Universidade Federal do Oeste da Bahia, CCET, Barreiras, Brazil
2Universidade Federal de Goiás, IME, Goiânia, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arthur, L.: Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer, Berlin (1987)

Barros, A., Batista, R., Ribeiro, E., Jr.: Bounds on volume growth of geodesic balls for Einstein warped products. Proc. Am. Math. Soc. 143(10), 4415–4422 (2015)

Batista, R., Ranieri, M., Ribeiro, E., Jr.: Remarks on complete noncompact Einstein warped products. Commun. Anal. Geom. 28(3), 547–563 (2020)

Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally flat static space-times. J. Math. Phys. 46(2), 022501 (2005)

Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93–100 (2011)

de Sousa, M.L., Pina, R.: A family of warped product semi-Riemannian Einstein metrics. Differ. Geom. Appl. 50, 105–115 (2017)

dos Santos, J.P., Leandro, B.: Reduction of the $$n$$-dimensional static vacuum Einstein equation and generalized Schwarzschild solutions. J. Math. Anal. Appl. 469(2), 882–896 (2019)

Einstein, A.: On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. Math. 2(40), 922–936 (1939)

Kim, D.-S., Kim, Y.H.: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Am. Math. Soc. 131(8), 2573–2576 (2003)

Kühnel, W.: Conformal Transformations between Einstein Spaces, Conformal Geometry (Bonn, 1985/1986), Aspects Math., E12, Friedr, pp. 105–146. Vieweg, Braunschweig (1988)

Kühnel, W., Rademacher, H.-B.: Conformal diffeomorphisms preserving the Ricci tensor. Proc. Am. Math. Soc. 123(9), 2841–2848 (1995)

Leandro, B., Lemes de Sousa, M., Pina, R.: On the structure of Einstein warped product semi-Riemannian manifolds. J. Integrable Syst. 3(1), xyy016, 11 (2018)

O’Neill, B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103. Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983). ((With applications to relativity))

Pina, R., Menezes, I., Silva, L.: Rigity results on $$\rho $$-Einstein solitons with zero scalar curvature (2021)

Rimoldi, M.: A remark on Einstein warped products. Pac. J. Math. 252(1), 207–218 (2011)