A Restricted Four-Parameter IRT Model: The Dyad Four-Parameter Normal Ogive (Dyad-4PNO) Model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitkin, M., & Aitkin, I. (2006). Investigation of the identifiability of the 3PL model in the NAEP 1986 math survey (Technical Report). Washington, DC: National Center for Educational Statistics.
Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37(6A), 3099–3132.
Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation techniques. New York, NY: Marcel Dekker.
Barton, M.A. & Lord, F.M. (1981). An upper asymptote for the three-parameter logistic item-response model (Technical Report No. 80-20). Princeton, NJ: Educational Testing Service.
Chen, Y., Culpepper, S. A., & Liang, F. (2020). A sparse latent class model for cognitive diagnosis. Psychometrika, 85, 121–153.
Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40(5), 454–476.
Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81(4), 1142–1163.
Culpepper, S. A. (2017). The prevalence and implications of slipping on low-stakes large-scale assessments. Journal of Educational and Behavioral Statistics, 42, 706–725.
Culpepper, S.A. (2019). fourPNO: Bayesian 4 Parameter Item Response Model [Computer software manual].
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333–353.
Feuerstahler, L. M., & Waller, N. G. (2014). Abstract: Estimation of the 4-parameter model with marginal maximum likelihood. Multivariate Behavioral Research, 49(3), 285.
Gao, F., & Chen, L. (2005). Bayesian or non-Bayesian: A comparison study of item parameter estimation in the three-parameter logistic model. Applied Measurement in Education, 18(4), 351–380.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. Boca Raton: FLChapman & Hall/CRC.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.
Gu, Y., & Xu, G. (2019). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica,. https://doi.org/10.5705/ss.202018.0420.
Han, K. T. (2012). Fixing the c parameter in the three-parameter logistic model. Practical Assessment, Research, and Evaluation, 17, 1–24.
Harwell, M. R., Baker, F. B., & Zwarts, M. (1988). Item parameter estimation via marginal maximum likelihood and an EM algorithm: A didactic. Journal of Educational Statistics, 13(3), 243–271.
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.
Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19(5A), 1790–1817.
Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509–525.
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187–212.
Maris, G., & Bechger, T. (2009). On interpreting the model parameters for the three parameter logistic model. Measurement, 7(2), 75–88.
Meng, X., Xu, G., Zhang, J., & Tao, J. (2019). Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework. British Journal of Mathematical and Statistical Psychology,. https://doi.org/10.1111/bmsp.12185.
Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods. Psychometrika, 84(3), 802–829.
Partchev, I. (2009). 3PL: A useful model with a mild estimation problem. Measurement, 7(2), 94–96.
Rulison, K. L., & Loken, E. (2009). I’ve fallen and I can’t get up: Can high-ability students recover from early mistakes in CAT? Applied Psychological Measurement, 33, 83–101.
San Martín, E., González, J., & Tuerlinckx, F. (2009). Identified parameters, parameters of interest and their relationships. Measurement, 7(2), 97–105.
San Martín, E., González, J., & Tuerlinckx, F. (2015). On the unidentifiability of the fixed-effects 3PL model. Psychometrika, 80(2), 450–467.
San Martín, E., Rolin, J.-M., & Castro, L. M. (2013). Identification of the 1PL model with guessing parameter: Parametric and semi-parametric results. Psychometrika, 78(2), 341–379.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64(4), 583–639.
Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51(4), 589–601.
Thissen, D. (2009). On interpreting the parameters for any item response model. Measurement, 7(2), 106–110.
Waller, N. G., & Feuerstahler, L. M. (2017). Bayesian modal estimation of the four-parameter item response model in real, realistic, and idealized data sets. Multivariate Behavioral Research, 52, 350–370.
Waller, N. G., & Reise, S. P. (2010). Measuring psychopathology with non-standard item response theory models: Fitting the four-parameter model to the Minnesota Multiphasic Personality Inventory. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 147–173). Washington, DC: American Psychological Association.