A Remark on the Invertibility of Semi-invertible Cocycles

Springer Science and Business Media LLC - Tập 25 - Trang 527-533 - 2018
Lucas Backes1
1Departamento de Matemática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Tóm tắt

We observe that under certain conditions on the Lyapunov exponents, a semi-invertible cocycle is, indeed, invertible. As a consequence, if a semi-invertible cocycle generated by a Hölder continuous map $A:\mathcal {M}\to M(d, \mathbb {R})$ over a hyperbolic system $f:\mathcal {M}\to \mathcal {M}$ satisfies a Livšic’s type condition, that is, if A(fn− 1(p)) ⋅… ⋅ A(f(p))A(p) = Id for every p ∈ Fix(fn), then the cocycle is invertible, meaning that $A(x)\in GL(d,\mathbb {R})$ for every $x\in \mathcal {M}$ , and a Livšic’s type theorem is satisfied.

Tài liệu tham khảo

Backes L. On the periodic approximation of Lyapunov exponents for semi-invertible cocycles. Discret Contin Dynam Syst 2017;37:6353–68. Cao Y. Non-zero Lyapunov exponents and uniform hyperbolicity. Nonlinearity 2003;16:1473–79. Froyland G, LLoyd S, Quas A. Coherent structures and isolated spectrum for Perron–Frobenius cocycles. Ergod Th Dynam Sys 2010;30:729–56. Gogolev A. Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms. Ergod Th Dynam. Sys 2010;30:441–56. Kalinin B. Livšic theorem for matrix cocycles. Ann Math 2011;173:1025–42. Kalinin B, Sadovskaya V. Cocycles with one exponent over partially hyperbolic systems. Geom Dedicata 2013;167:167–88. Katok A, Hasselblatt B. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press; 1995. Oseledets VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 1968;19:197–231. Tian X. Nonexistence of Lyapunov exponents for matrix cocycles. Ann Inst H Poincaré Probab Statist 2017;53:493–502. Viana M. Lectures on Lyapunov exponents. Cambridge University Press. 2014.