A Remark on the Convergence of the Douglas–Rachford Iteration in a Non-convex Setting

Springer Science and Business Media LLC - Tập 26 - Trang 207-225 - 2018
Ohad Giladi1
1School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, Australia

Tóm tắt

Using a known construction of a Lyapunov function, it is shown that the Douglas–Rachford iteration with respect to a sphere and a line in a Hilbert space converges to the intersection point in a fashion which is stronger than uniform convergence on compact sets.

Tài liệu tham khảo

Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Global Optim. 57(3), 753–769 (2013) Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem. J. Global Optim. 65(2), 309–327 (2016) Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Amer. A 19(7), 1334–1345 (2002) Bauschke, H.H., Dao, M.N.: On the finite convergence of the Douglas–Rachford algorithm for solving (not necessarily convex) feasibility problems in euclidean spaces. SIAM J. Optim. 27(1), 507–537 (2017) Bauschke, H.H., Noll, D.: On the local convergence of the Douglas–Rachford algorithm. Arch. Math. 102(6), 589–600 (2014) Benoist, J.: The Douglas–Rachford algorithm for the case of the sphere and the line. J. Global Optim. 63(2), 363–380 (2015) Borwein, J.M., Giladi, O.: Ergodic behaviour of a Douglas–Rachford operator away from the origin. To appear in J. Nonlinear Convex Anal. Available at arXiv:1708.09068 (2017) Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optim. Appl., vol. 49, pp. 93–109. Springer, New York (2011) Dao, M.N., Tam, M.K.: A Lyapunov-type approach to convergence of the Douglas-Rachford algorithm. Available at arXiv:1706.04846 (2017) Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad. Sci. USA 104(2), 418–423 (electronic) (2007) Giladi, O., Rüffer, B.S.: A Lyapunov function construction for the Douglas-Rachford operator in a non-convex setting. Available at arXiv:1708.08697 (2017) Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, p viii+ 244. Cambridge University Press, Cambridge (1990) Gravel, S., Elser, V.: Divide and concur: A general approach to constraint satisfaction. Phys. Rev. E 78(3), 036706 (2008) Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013) Kellett, C.M.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015) Kellett, C.M., Teel, A.R.: On the robustness of \(\mathcal {K}\mathcal {L}\)-stability for difference inclusions: smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005) Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979) Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967) Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization 65(2), 369–385 (2016)