A Relation Between Disorder Chaos and Incongruent States in Spin Glasses on $${\mathbb{Z}^d}$$

Springer Science and Business Media LLC - Tập 367 - Trang 1019-1043 - 2019
L.-P. Arguin1, C. M. Newman2,3, D. L. Stein4,5,6
1Department of Mathematics, City University of New York, Baruch College and Graduate Center, New York, USA
2Courant Institute of Mathematical Sciences, New York University, New York, USA
3NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai, China
4Department of Physics and Courant Institute of Mathematical Sciences, New York University, New York, USA
5NYU-ECNU Institutes of Physics and Mathematical Sciences at NYU Shanghai, Shanghai, China
6Santa Fe Institute, Santa Fe, USA

Tóm tắt

We derive lower bounds for the variance of the difference of energies between incongruent ground states, i.e., states with edge overlaps strictly less than one, of the Edwards–Anderson model on $${\mathbb{Z}^d}$$ . The bounds highlight a relation between the existence of incongruent ground states and the absence of edge disorder chaos. In particular, it suggests that the presence of disorder chaos is necessary for the variance to be of order less than the volume. In addition, a relation is established between the scale of disorder chaos and the size of critical droplets. The results imply a long-conjectured relation between the droplet theory of Fisher and Huse and the absence of incongruence.

Tài liệu tham khảo

Adler R.J., Taylor J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) Aizenman, M., Fisher, D.S.: Unpublished Aizenman M., Wehr J.: Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130(3), 489–528 (1990) Arguin L.-P., Damron M.: Short-range spin glasses and random overlap structures. J. Stat. Phys. 143(2), 226–250 (2011) Arguin, L.-P., Damron, M.: On the number of ground states of the Edwards–Anderson spin glass model. Ann. Inst. H. Poincaré Probab. Stat. 50(1), 28–62, 02 (2014) Arguin L.-P., Damron M., Newman C.M., Stein D.L.: Uniqueness of ground states for short-range spin glasses in the half-plane. Commun. Math. Phys. 300(3), 641–657 (2010) Arguin L.-P., Newman C.M., Stein D.L., Wehr J.: Fluctuation bounds for interface free energies in spin glasses. J. Stat. Phys. 156(2), 221–238 (2014) Arguin L.-P., Newman C.M., Stein D.L., Wehr J.: Zero-temperature fluctuations in short-range spin glasses. J. Stat. Phys. 163(5), 1069–1078 (2016) Bouchaud J.-P., Krzakala F., Martin O.C.: Energy exponents and corrections to scaling in Ising spin glasses. Phys. Rev. B 68, 224404 (2003) Bray A.J., Moore M.A.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 31, 631–633 (1985) Bray A.J., Moore M.A.: Chaotic nature of the spin-glass phase. Phys. Rev. Lett. 58, 57–60 (1987) Chatterjee S.: Superconcentration and Related Topics. Springer Monographs in Mathematics. Springer, Cham (2014) Edwards S.F., Anderson P.W.: Theory of spin glasses. J. Phys. F Met. Phys. 5, 965–974 (1975) Fisher D.S., Huse D.A.: Ordered phase of short-range ising spin-glasses. Phys. Rev. Lett. 56, 1601–1604 (1986) Fisher D.S., Huse D.A.: Absence of many states in realistic spin glasses. J. Phys. A 20(15), L1005–L1010 (1987) Fisher D.S., Huse D.A.: Equilibrium behavior of the spin-glass ordered phase. Phys. Rev. B 38, 386–411 (1988) Huse D.A., Fisher D.S.: Pure states in spin glasses. J. Phys. A: Math. Gen. 20(15), L997 (1987) Krzakala F., Bouchaud J.-P.: Disorder chaos in spin glasses. Europhys. Lett. 72, 472–478 (2005) Krzakala F., Martin O.C.: Spin and link overlaps in three-dimensional spin glasses. Phys. Rev. Lett. 85, 3013–3016 (2000) Krzakala F., Parisi G.: Local excitations in mean-field spin glasses. Europhys. Lett. 66, 729–735 (2004) McMillan W.L.: Scaling theory of Ising spin glasses. J. Phys. C 17, 3179–3187 (1984) Mézard M., Parisi G., Sourlas N., Toulouse G., Virasoro M.: Nature of spin-glass phase. Phys. Rev. Lett. 52, 1156–1159 (1984) Mézard M., Parisi G., Sourlas N., Toulouse G., Virasoro M.: Replica symmetry breaking and the nature of the spin-glass phase. J. Phys. (Paris) 45, 843–854 (1984) Mézard M., Parisi G., Virasoro M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987) Newman, C.M., Stein, D.L.: Unpublished Newman C.M., Stein D.L.: Nature of ground state incongruence in two-dimensional spin glasses. Phys. Rev. Lett. 84, 3966–3969 (2000) Newman C.M., Stein D.L.: Interfaces and the question of regional congruence in spin glasses. Phys. Rev. Lett. 87, 077201 (2001) Newman C.M., Stein D.L.: Topical review: ordering and broken symmetry in short-ranged spin glasses. J. Phys.: Condens. Matter 15, R1319–R1364 (2003) Palassini M., Young A.P.: Nature of the spin glass state. Phys. Rev. Lett. 85, 3017–3020 (2000) Parisi G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979) Parisi G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50, 1946–1948 (1983) Sherrington D., Kirkpatrick S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975) Stein, D.L.: Frustration and fluctuations in systems with quenched disorder. In: Chandra, P., Coleman, P., Kotliar, G., Ong, P., Stein, D.L., Yu, C. (eds.) PWA90: A Lifetime of Emergence, pp. 169–186. World Scientific, Singapore (2016) Subag, E.: The geometry of the Gibbs measure of pure spherical spin glasses (2016). arXiv:1604.00679 van Enter A.: Stiffness exponent, number of pure states, and Almeida-Thouless line in spin-glasses. J. Stat. Phys. 60, 275–279 (1990) Wang, W., Moore, M.A., Katzgraber, H.G.: Fractal dimension of interfaces in Edwards–Anderson spin glasses for up to six space dimensions (2018). Preprint, arXiv:1712.04971