A Reduced Order Deep Data Assimilation model

Physica D: Nonlinear Phenomena - Tập 412 - Trang 132615 - 2020
César Quilodrán Casas1, Rossella Arcucci1, Pin Wu2, Christopher Pain1,3, Yi-Ke Guo1
1Data Science Institute, Department of Computing, Imperial College London, UK
2School of Computer Science and Engineering, Shanghai University, China
3Department of Earth Science & Engineering, Imperial College London, UK

Tài liệu tham khảo

Asch, 2016 Kalnay, 2003 Margvelashvili, 2016, Emulator-assisted data assimilation in complex models, Ocean Dyn., 66, 1109, 10.1007/s10236-016-0973-8 Bakun, 2003, Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on el nino effects in the pacific, Fisheries Oceanography, 12, 458, 10.1046/j.1365-2419.2003.00258.x McDonnell, 2004, A Poisson regression model of tropical cyclogenesis for the Australian–southwest pacific ocean region, Weather Forecast., 19, 440, 10.1175/1520-0434(2004)019<0440:APRMOT>2.0.CO;2 Lins, 2013, Prediction of sea surface temperature in the tropical atlantic by support vector machines, Comput. Statist. Data Anal., 61, 187, 10.1016/j.csda.2012.12.003 Goodfellow, 2016 V. Babovic, M. Keijzer, M. Bundzel, From global to local modelling: a case study in error correction of deterministic models, in: Proceedings of Fourth International Conference on Hydroinformatics, 2000. Babovic, 2001, Neural networks as routine for error updating of numerical models, J. Hydraul. Eng., 127, 181, 10.1061/(ASCE)0733-9429(2001)127:3(181) Babovic, 2002, Data assimilation of local model error forecasts in a deterministic model, Int. J. Numer. Methods Fluids, 39, 887, 10.1002/fld.350 Zhu, 2019, Model error correction in data assimilation by integrating neural networks, Big Data Min. Anal., 2, 83, 10.26599/BDMA.2018.9020033 Quilodrán Casas, 2018 Gagne, 2017, Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles, Weather Forecast., 32, 1819, 10.1175/WAF-D-17-0010.1 Campos, 2019, Nonlinear wave ensemble averaging in the Gulf of Mexico using neural networks, J. Atmos. Ocean. Technol., 36, 113, 10.1175/JTECH-D-18-0099.1 Dueben, 2018, Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999, 10.5194/gmd-11-3999-2018 Rasp, 2020 Boukabara, 2019, Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, Bull. Amer. Meteorol. Soc. Li, 2019, Potential numerical techniques and challenges for atmospheric modeling, Bull. Amer. Meteorol. Soc., 100, ES239, 10.1175/BAMS-D-19-0031.1 Arcucci, 2019, Optimal reduced space for variational data assimilation, J. Comput. Phys., 379, 51, 10.1016/j.jcp.2018.10.042 Errico, 1997, What is an adjoint model?, Bull. Amer. Meteorol. Soc., 78, 2577, 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2 Heaney, 2018 Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, 10.1037/h0071325 Greff, 2016, LSTM: A search space odyssey, IEEE Trans. Neural Netw. Learn. Syst., 28, 2222, 10.1109/TNNLS.2016.2582924 Hannachi, 2007, Empirical orthogonal functions and related techniques in atmospheric science: A review, Int. J. Climatol.: J. R. Meteorol. Soc., 27, 1119, 10.1002/joc.1499 Lever, 2017 Hochreiter, 1997, Long short-term memory, Neural Comput., 9, 1735, 10.1162/neco.1997.9.8.1735 Xingjian, 2015, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, 802 Nichols, 2010, 13 Cacuci, 2016 Engl, 1996 Hansen, 1998 Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteorol. Soc. Japan, 75, 339, 10.2151/jmsj1965.75.1B_339 Courtier, 1994, A strategy for operational implementation of 4d-var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367, 10.1002/qj.49712051912 Lorenz, 1956 Hannachi, 2004 Arcucci, 2017, On the variational data assimilation problem solving and sensitivity analysis, J. Comput. Phys., 335, 311, 10.1016/j.jcp.2017.01.034 Gers, 1999 Sutskever, 2014, Sequence to sequence learning with neural networks, 3104 Davies, 2011, Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics, Geochem. Geophys. Geosyst., 12, 10.1029/2011GC003551 Dawson, 2016, Eofs: A library for eof analysis of meteorological, oceanographic, and climate data, J. Open Res. Softw., 4, 10.5334/jors.122 Dozat, 2016 V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.