A Reduced Order Deep Data Assimilation model
Tài liệu tham khảo
Asch, 2016
Kalnay, 2003
Margvelashvili, 2016, Emulator-assisted data assimilation in complex models, Ocean Dyn., 66, 1109, 10.1007/s10236-016-0973-8
Bakun, 2003, Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on el nino effects in the pacific, Fisheries Oceanography, 12, 458, 10.1046/j.1365-2419.2003.00258.x
McDonnell, 2004, A Poisson regression model of tropical cyclogenesis for the Australian–southwest pacific ocean region, Weather Forecast., 19, 440, 10.1175/1520-0434(2004)019<0440:APRMOT>2.0.CO;2
Lins, 2013, Prediction of sea surface temperature in the tropical atlantic by support vector machines, Comput. Statist. Data Anal., 61, 187, 10.1016/j.csda.2012.12.003
Goodfellow, 2016
V. Babovic, M. Keijzer, M. Bundzel, From global to local modelling: a case study in error correction of deterministic models, in: Proceedings of Fourth International Conference on Hydroinformatics, 2000.
Babovic, 2001, Neural networks as routine for error updating of numerical models, J. Hydraul. Eng., 127, 181, 10.1061/(ASCE)0733-9429(2001)127:3(181)
Babovic, 2002, Data assimilation of local model error forecasts in a deterministic model, Int. J. Numer. Methods Fluids, 39, 887, 10.1002/fld.350
Zhu, 2019, Model error correction in data assimilation by integrating neural networks, Big Data Min. Anal., 2, 83, 10.26599/BDMA.2018.9020033
Quilodrán Casas, 2018
Gagne, 2017, Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles, Weather Forecast., 32, 1819, 10.1175/WAF-D-17-0010.1
Campos, 2019, Nonlinear wave ensemble averaging in the Gulf of Mexico using neural networks, J. Atmos. Ocean. Technol., 36, 113, 10.1175/JTECH-D-18-0099.1
Dueben, 2018, Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999, 10.5194/gmd-11-3999-2018
Rasp, 2020
Boukabara, 2019, Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, Bull. Amer. Meteorol. Soc.
Li, 2019, Potential numerical techniques and challenges for atmospheric modeling, Bull. Amer. Meteorol. Soc., 100, ES239, 10.1175/BAMS-D-19-0031.1
Arcucci, 2019, Optimal reduced space for variational data assimilation, J. Comput. Phys., 379, 51, 10.1016/j.jcp.2018.10.042
Errico, 1997, What is an adjoint model?, Bull. Amer. Meteorol. Soc., 78, 2577, 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
Heaney, 2018
Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, 10.1037/h0071325
Greff, 2016, LSTM: A search space odyssey, IEEE Trans. Neural Netw. Learn. Syst., 28, 2222, 10.1109/TNNLS.2016.2582924
Hannachi, 2007, Empirical orthogonal functions and related techniques in atmospheric science: A review, Int. J. Climatol.: J. R. Meteorol. Soc., 27, 1119, 10.1002/joc.1499
Lever, 2017
Hochreiter, 1997, Long short-term memory, Neural Comput., 9, 1735, 10.1162/neco.1997.9.8.1735
Xingjian, 2015, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, 802
Nichols, 2010, 13
Cacuci, 2016
Engl, 1996
Hansen, 1998
Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteorol. Soc. Japan, 75, 339, 10.2151/jmsj1965.75.1B_339
Courtier, 1994, A strategy for operational implementation of 4d-var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367, 10.1002/qj.49712051912
Lorenz, 1956
Hannachi, 2004
Arcucci, 2017, On the variational data assimilation problem solving and sensitivity analysis, J. Comput. Phys., 335, 311, 10.1016/j.jcp.2017.01.034
Gers, 1999
Sutskever, 2014, Sequence to sequence learning with neural networks, 3104
Davies, 2011, Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics, Geochem. Geophys. Geosyst., 12, 10.1029/2011GC003551
Dawson, 2016, Eofs: A library for eof analysis of meteorological, oceanographic, and climate data, J. Open Res. Softw., 4, 10.5334/jors.122
Dozat, 2016
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.