A Recipe for Success: Three Key Strategies Used by Aphids and Pseudomonas syringae to Colonize the Phyllosphere

Microbial Ecology - Tập 85 - Trang 1-8 - 2022
Christian Silva-Sanzana1,2, Maria Victoria Gangas1,2, Diego Zavala1,2,3, Francisca Blanco-Herrera1,2,3
1Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
2Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
3Center of Applied Ecology and Sustainability (CAPES), ANID, Santiago, Chile

Tóm tắt

Aphids and Pseudomonas syringae are a permanent challenge for agriculture, causing severe losses to the crop industry worldwide. Despite the obvious phylogenetic distance between them, both have become predominant colonizers of the plant kingdom. In this study, we reviewed three key steps of spread and colonization that aphids and P. syringae have mastered to successfully colonize the phyllosphere. These steps involve (i) plant-to-plant movement for locating new nutritional sources, (ii) disruption and modification of the apoplast to facilitate nutrient acquisition, and (iii) suppression of host defenses through effector proteins. In addition, we will provide insights about the direct interaction between aphids and P. syringae and how this yet underrated phenomenon could bring new ecological implications for both organisms beyond their pathogenicity.

Tài liệu tham khảo

Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328. https://doi.org/10.1038/nrmicro.2018.17 Vanneste JL (2017) The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu Rev Phytopathol 55:377–399. https://doi.org/10.1146/annurev-phyto-080516-035530 Schoonhoven LM, Van Loon B, van Loon JJ, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford Valenzuela I, Hoffmann AA (2015) Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomol 54:292–305. https://doi.org/10.1111/aen.12122 Döring TF, Chittka L (2007) Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod Plant Interact 1:3–16. https://doi.org/10.1007/s11829-006-9000-1 Kirchner SM, Döring TF, Saucke H (2005) Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). J Insect Physiol 51:1255–1260. https://doi.org/10.1016/j.jinsphys.2005.07.002 Bajwa SG, Rupe JC, Mason J (2017) Soybean disease monitoring with leaf reflectance. Remote Sens 9:127. https://doi.org/10.3390/rs9020127 Hendry TA, Ligon RA, Besler KR, Fay RL, Smee MR (2018) Visual detection and avoidance of pathogenic bacteria by aphids. Curr Biol 28:3158-3164.e4. https://doi.org/10.1016/j.cub.2018.07.073 Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230–2235. https://doi.org/10.1128/AEM.02860-08 Smee MR, Baltrus DA, Hendry TA (2017) Entomopathogenicity to two hemipteran insects is common but variable across epiphytic Pseudomonas syringae strains. Front Plant Sci 8:2149. https://doi.org/10.3389/fpls.2017.02149 Smee MR, Real-Ramirez I, Zuluaga Arias C, Hendry TA (2021) Epiphytic Strains of Pseudomonas syringae Kill Diverse Aphid Species. Appl Environ Microbiol 87(11):e00017-21. https://doi.org/10.3389/fphys.2018.00777 Russell GB, Faundez EH, Niemeyer HM (2004) Selection of Nothofagus host trees by the aphids Neuquenaphis staryi and Neuquenaphis edwardsi. J Chem Ecol 30:2231–2241. https://doi.org/10.1023/b:joec.0000048785.80336.86 Tjallingii WF, Esch TH (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:317–328. https://doi.org/10.1111/j.1365-3032.1993.tb00604.x Vaïtilingom M, Attard E, Gaiani N, Sancelme M, Deguillaume L, Flossmann AI, Amato P, Delort A (2012) Long-term features of cloud microbiology at the Puy de Dôme (France). Atmos Environ 56:88–100. https://doi.org/10.1016/j.atmosenv.2012.03.072 Monteil CL, Bardin M, Morris CE (2014) Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME J 8:2290–2304. https://doi.org/10.1038/ismej.2014.55 Pesciaroli C, Cupini F, Selbmann L, Barghini P, Fenice M (2012) Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol 35:435–445. https://doi.org/10.1007/s00300-011-1091-1 Monteil CL, Lafolie F, Laurent J, Clement JC, Simler R, Travi Y, Morris CE (2014) Soil water flow is a source of the plant pathogen P. seudomonas syringae in subalpine headwaters. Environ Microbiol 16:2038–2052. https://doi.org/10.1111/1462-2920.12296 Joly M, Amato P, Sancelme M, Vinatier V, Abrantes M, Deguillaume L, Delort A (2015) Survival of microbial isolates from clouds toward simulated atmospheric stress factors. Atmos Environ 117:92–98. https://doi.org/10.1016/j.atmosenv.2015.07.009 Amato P, Demeer F, Melaouhi A, Fontanella S, Martin-Biesse A-S, Sancelme M, Laj P, Delort AM (2007) A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos Chem Phys 7:4159–4169. https://doi.org/10.5194/acp-7-4159-2007 Donati I, Cellini A, Buriani G, Mauri S, Kay C, Tacconi G, Spinelli F (2018) Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hortic Res 5:56. https://doi.org/10.1038/s41438-018-0058-6 Will T, Vilcinskas A (2015) The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol 57:34–40. https://doi.org/10.1016/j.ibmb.2014.12.005 Will T, van Bel AJ (2008) Induction as well as suppression: how aphid saliva may exert opposite effects on plant defense. Plant Signal Behav 3:427–430. https://doi.org/10.4161/psb.3.6.5473 Smee MR, Real-Ramirez I, Hendry TA (2019) Insects as phyllosphere microbiome engineers: effects of aphids on a plant pathogen. bioRxiv 797738 B, Müller T, (2000) Effects of aphids and moth caterpillars on epiphytic microorganisms in canopies of forest trees. Can J For Res 30:631–638. https://doi.org/10.1139/x99-253 Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653. https://doi.org/10.1128/MMBR.64.3.624-653.2000 Nomura K, Mecey C, Lee YN, Imboden LA, Chang JH, He SY (2011) Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proc Natl Acad Sci USA 108:10774–10779. https://doi.org/10.1073/pnas.1103338108 Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60. https://doi.org/10.1016/j.mib.2008.12.003 Li L, Kim P, Yu L, Cai G, Chen S, Alfano JR, Zhou JM (2016) Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 20:504–514. https://doi.org/10.1016/j.chom.2016.09.007 Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80. https://doi.org/10.1016/j.cub.2007.12.020 Büttner D (2016) Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 40:894–937. https://doi.org/10.1093/femsre/fuw026 Porter K, Day B (2016) From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. J Integr Plant Biol 58:299–311. https://doi.org/10.1111/jipb.12445 Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27:747–756. https://doi.org/10.1094/MPMI-01-14-0018-R Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105:9965–9969. https://doi.org/10.1073/pnas.0708958105 Wang Z, Lü Q, Zhang L, Zhang M, Chen L, Zou S, Zhang C, Dong H (2021) Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2–A1 in Arabidopsis. Biochem Biophys Res Commun 572:105–111. https://doi.org/10.1016/j.bbrc.2021.07.066 Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135. https://doi.org/10.1016/j.chom.2008.02.010 Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci 95(17):9750–9754 Boissot N, Schoeny A, Vanlerberghe-Masutti F (2016) Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects. Front Plant Sci 7:1420. https://doi.org/10.3389/fpls.2016.01420