A Quantum Evolving Secret Sharing Scheme
Tóm tắt
An evolving secret sharing scheme is supposed to accommodate unbounded number (potentially infinite) of new participants over time and the dealer should not know the set of participants in advance. In this paper we initiate the study of quantum evolving schemes to share a quantum secret and show how to construct such a scheme where the qualified subsets (the sets which can reconstruct the secret) of participants are of increasing size as the number of participants increases with time. Share is given to new participants without modifying shares of old participants. While quantum secret sharing schemes which can accommodate new participants over time have been constructed before, a quantum scheme which can handle an unbounded and unspecified number of participants has not been considered so far. We also discuss the resilience of our scheme against a bounded number of quantum queries by an adversary/eavesdropper. This is achieved by using special functions for which lower bounds on their quantum query complexity is known.
Tài liệu tham khảo
Aharonov, D., Ben-Or, M., Eban, E., Mahadev, U.: Interactive proofs for quantum computations. arXiv:1704.04487 (2017)
Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)
Ambainis, A.: Polynomial degree vs. quantum query complexity. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings, pp 230–239 (2003)
Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small range. Theory of Computing 1(1), 37–46 (2005)
Bai, C. M., Li, Z. H., Si, M. M., Li, Y. M.: Quantum secret sharing for a general quantum access structure. Eur. Phys. J. D 71(10), 1–8 (2017)
Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: International Conference on Security and Cryptography for Networks, pp 313–332. Springer (2018)
Blakley, G. R.: Safeguarding cryptographic keys. In: 1979 International Workshop on Managing Requirements Knowledge (MARK), pp 313–318. IEEE (1979)
Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Annual Cryptology Conference, pp 344–360. Springer (2013)
Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low t-gate complexity. In: Annual Cryptology Conference, pp 609–629. Springer (2015)
Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authentication. In: International Conference on Information Theoretic Security, pp 72–91. Springer (2016)
Bun, M., Kothari, R., Thaler, J.: The polynomial method strikes back: Tight quantum query bounds via dual polynomials. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp 297–310 (2018)
Chen, W., Ye, Z., Li, L.: Characterization of exact one-query quantum algorithms. Phys. Rev. A 101(2), 022325 (2020)
Childs, A. M.: Secure assisted quantum computation. arXiv:quant-ph/0111046 (2001)
Cleve, R., Gottesman, D., Lo, H. K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)
Du, Y.T., Bao, W.S.: Dynamic quantum secret sharing protocol based on two-particle transform of bell states. Chinese Physics B 27(8), 080304 (2018)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)
Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp 13–58 (2010)
Grassl, M., Roetteler, M.: Quantum error correction and fault tolerant quantum computing. Computational Complexity: Theory, Techniques, and Applications, pp. 2478–2495 (2013)
Hsu, J. L., Chong, S. K., Hwang, T., Tsai, C. W.: Dynamic quantum secret sharing. Quantum Inf. Process 12(1), 331–344 (2013)
Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)
Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Theory of Cryptography Conference, pp 485–514. Springer (2016)
Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresholds and robustness. In: Theory of Cryptography Conference, pp 379–393. Springer (2017)
Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query complexity using kolmogorov arguments. In: Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004., pp. 294–304 (2004)
Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124(6), 060501 (2020)
Liao, C. H., Yang, C. W., Hwang, T.: Dynamic quantum secret sharing protocol based on ghz state. Quantum Inf. Process 13(8), 1907–1916 (2014)
Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016)
Maitra, A., Paul, G.: A resilient quantum secret sharing scheme. Int. J. Theor. Phys. 54(2), 398–408 (2015)
Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels and the cost of randomizing quantum information. arXiv:quant-ph/0003101 (2000)
Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional bell state. Inf. Process. Lett. 116(5), 351–355 (2016)
Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional ghz state. Quantum Inf. Process. 16(3), 64 (2017)
Qin, H., Zhu, X., Dai, Y.: (t, n) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process 14(8), 2997–3004 (2015)
Reichardt, B. W.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp 544–551. IEEE (2009)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Sharma, K., Wakakuwa, E., Wilde, M.M.: Conditional quantum one-time pad. Phys. Rev. Lett. 124(5), 050503 (2020)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)