Một Góc Nhìn Dựa Trên Động Lực Bảo Vệ Để Giải Thích Ý Định Sử Dụng Và Tiếp Tục Sử Dụng Hệ Thống Cảnh Báo Di Động

Business & Information Systems Engineering - Tập 64 - Trang 167-182 - 2021
Diana Fischer-Preßler1, Dario Bonaretti2, Kai Fischbach1
1Chair in Information Systems and Social Networks, University of Bamberg, Bamberg, Germany
2Department of Decision Sciences, H. W. Huizenga College of Business and Entrepreneurship, Nova Southeastern University, Fort Lauderdale, USA

Tóm tắt

Các ứng dụng cảnh báo khẩn cấp trên di động là rất quan trọng cho việc giao tiếp khẩn cấp hiệu quả - tất nhiên, với điều kiện rằng người dân có ý định sử dụng chúng. Dựa trên lý thuyết động lực bảo vệ, nghiên cứu này đã xác thực một mô hình tâm lý học để giải thích những gì thúc đẩy cá nhân cài đặt ứng dụng cảnh báo lần đầu tiên và tiếp tục sử dụng nó theo thời gian. Mô hình phương trình cấu trúc dựa trên phương sai đa nhóm đã được sử dụng để mô hình hóa câu trả lời từ một cuộc khảo sát đo lường các yếu tố thúc đẩy ý định bắt đầu sử dụng hoặc ý định tiếp tục sử dụng ứng dụng cảnh báo. Mô hình cho thấy rằng, đối với cả người không sử dụng và người sử dụng, lòng tin, ảnh hưởng xã hội và hiệu quả phản ứng ảnh hưởng tích cực và phần thưởng không thích nghi ảnh hưởng tiêu cực đến ý định sử dụng và ý định tiếp tục sử dụng các ứng dụng cảnh báo. Tuy nhiên, sự dễ bị tổn thương cảm nhận chỉ ảnh hưởng đến ý định sử dụng, trong khi chi phí phản ứng và hiệu quả tự thân ảnh hưởng đến ý định tiếp tục sử dụng. Do đó, nghiên cứu này nâng cao hiểu biết lý thuyết về hành vi bảo vệ được hỗ trợ bởi công nghệ và cung cấp cho các chuyên gia một danh sách các yếu tố cần xem xét để thúc đẩy việc áp dụng và tiếp tục sử dụng các ứng dụng cảnh báo khẩn cấp.

Từ khóa

#ứng dụng cảnh báo khẩn cấp #động lực bảo vệ #mô hình tâm lý học #hành vi bảo vệ công nghệ #ý định sử dụng

Tài liệu tham khảo

Ada S, Sharman R, Han W, Brennan JA (2016) Factors impacting the intention to use emergency notification services in Campus emergencies: an empirical investigation. IEEE Transact Prof Commun 59:89–109 Anderson CL, Agarwal R (2010) Practicing safe computing: a multimethod empirical examination of home computer user security behavioral intentions. MIS Q 34:613–643 Appleby-Arnold S, Brockdorff N, Fallou L, Bossu R (2019) Truth, trust, and civic duty: cultural factors in citizens’ perceptions of mobile phone apps and social media in disasters. J Conting Crisis Manag 27:293–305. https://doi.org/10.1111/1468-5973.12282 Arbuckle JL (1996) Full information estimation in the presence of incomplete data. In: Advanced structural equation modelling: issues and techniques. Lawrence Erlbaum Associates, Mahwah, NJ, pp 243–277 Bagozzi RP, Yi Y (1988) On the evaluation of structural equation models. J Acad Mark Sci 16:74–94 Baptista G, Oliveira T (2015) Understanding mobile banking: the unified theory of acceptance and use of technology combined with cultural moderators. Comput Human Behav 50:418–430. https://doi.org/10.1016/j.chb.2015.04.024 Belanche D, Casaló LV, Flavián C, Schepers J (2014) Trust transfer in the continued usage of public e-services. Inf Manag 51:627–640. https://doi.org/10.1016/j.im.2014.05.016 Bhattacherjee A (2001) Understanding information systems continuance: an expectation-confirmation model. MIS Q 25:351. https://doi.org/10.2307/3250921 Bhattacherjee A, Lin C-P (2015) A unified model of IT continuance: three complementary perspectives and crossover effects. Eur J Inf Syst 24:364–373. https://doi.org/10.1057/ejis.2013.36 Bhattacherjee A, Premkumar G (2004) Understanding changes in belief and attitude toward information technology usage: a theoretical model and longitudinal test. MIS Q 28:229–254 Bockarjova M, Steg L (2014) Can protection motivation theory predict pro-environmental behavior? Explaining the adoption of electric vehicles in the Netherlands. Global Environ Change 28:276–288 Bonaretti D, Fischer-Preßler D (2021) The problem with SMS campus warning systems: an evaluation based on recipients’ spatial awareness. Int J Disaster Risk Reduct 54:102031. https://doi.org/10.1016/j.ijdrr.2020.102031 Boss SR, Galletta DF, Lowry PB, Moody GD, Polak P (2015) What do systems users have to fear? Using fear appeals to engender threats and fear that motivate protective security behaviors. MIS Q 39:837–864 Botterell A, Addams-Moring R (2007) Public warning in the networked age: open standards to the rescue? Commun ACM 50:59–60 Bubeck P, Botzen WJW, Aerts JCJH (2012) A review of risk perceptions and other factors that influence flood mitigation behavior. Risk ANAL 32:1481–1495 Bygstad B (2017) Generative innovation: a comparison of lightweight and heavyweight IT. J Inf Technol 32:180–193. https://doi.org/10.1057/jit.2016.15 Byrne BM (2004) Testing for multigroup invariance using AMOS graphics: a road less traveled. Struct Eqn Model Multi J 11(2):S.272–300: https://doi.org/10.1207/s15328007sem1102_8 Carter L, Bélanger F (2005) The utilization of e-government services: citizen trust, innovation and acceptance factors. Inf Syst J 15:5–25. https://doi.org/10.1111/j.1365-2575.2005.00183.x Chakraborty R, Agrawal M, Rao HR (2014) Information processing under stress: a study of Mumbai police first responders. IIMB Manag Rev 26:91–104 Chang YP, Zhu DH (2012) The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Comput Human Behav 28:995–1001. https://doi.org/10.1016/j.chb.2012.01.001 Chen FF (2007) Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct Equ Model Multidiscip J 14:464–504. https://doi.org/10.1080/10705510701301834 Chen S-C, Yen DC, Hwang MI (2012) Factors influencing the continuance intention to the usage of Web 2.0: an empirical study. Comput Human Behav 28:933–941. https://doi.org/10.1016/j.chb.2011.12.014 Crossler RE, Johnston AC, Lowry PB, Hu Q, Warkentin M, Baskerville R (2013) Future directions for behavioral information security research. Comput Secur 32:90–101 Fischer-Preßler D, Bonaretti D, Fischbach K (2020) Effective use of mobile-enabled emergency warning systems. In: European conference on information systems Floyd DL, Prentice-Dunn S, Rogers RW (2000) A meta-analysis of research on protection motivation theory. J Appl Soc Psychol 30:407–429 Fornell C, Larcker DF (1987) Evaluating structural equation models with unobservable and measurement error. J Mark Res 18:39–50 Franque FB, Oliveira T, Tam C, Santini FdO (2020) A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Res. https://doi.org/10.1108/INTR-03-2019-0103 Frees B, Koch W (2018) ARD/ZDF-Onlinestudie: Zuwachs bei medialer Internetnutzung und Kommunikation. ARD/ZDF-Onlinestudie 2018. http://www.ard-zdf-onlinestudie.de/files/2018/0918_Frees_Koch.pdf. Accessed 1 Aug 2019 Gefen D, Rigdon EE, Straub DW (2011) Editor’s comments: an update and extension to SEM guidelines for administrative and social science review. MIS Q 35:iii–xiv Glendon AI, Walker BL (2013) Can anti-speeding messages based on protection motivation theory influence reported speeding intentions? Accid Anal Prev 57:67–79 Glik DC (2007) Risk communication for public health emergencies. Annu Rev Publ Health 28:33–54 Grothmann T, Reusswig F (2006) People at risk of flooding: why some residents take precautionary action while others do not. Nat Hazards 38:101–120 Han W, Ada S, Sharman R, Rao HR (2015) Campus emergency notification systems: an examination of factors affecting compliance with alerts. MIS Q 39:909–929 Hayes AF (2009) Beyond Baron and Kenny: statistical mediation analysis in the new millennium. Commun Monogr 76:408–420. https://doi.org/10.1080/03637750903310360 Herath T, Chen R, Wang J, Banjara K, Wilbur J, Rao HR (2014) Security services as coping mechanisms: an investigation into user intention to adopt an email authentication service. Inf Syst J 24:61–84 Hoehle H, Venkatesh V (2015) Mobile application usability: conceptualization and instrument development. MIS Q 39:435–472 Hu L-t, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model Multidiscip J 6:1–55 Kosinski M, Matz SC, Gosling SD, Stillwell D (2015) Facebook as a research tool for the social science. Am Psychol 70(6):S.543–556 Kreuter F, Presser S, Tourangeau R (2009) Social desirability bias in CATI, IVR, and web surveys: the effects of mode and question sensitivity. Public Opin Q 72(5):S.847–865 Lee Y, Larsen KR (2009) Threat or coping appraisal: determinants of SMB executives’ decision to adopt anti-malware software. Eur J Inf Syst 18:177–187 Lee D, Larose R, Rifon N (2008) Keeping our network safe: a model of online protection behaviour. Behav Inf Technol 27:445–454 Lee D, Chung JY, Kim H (2013) Text me when it becomes dangerous: exploring the determinants of college students’ adoption of mobile-based text alerts short message service. Comput Human Behav 29:563–569 Leelawat N, Pee LG, Iijima J (2013) Mobile apps in flood disasters: what information do users prefer? In: International conference on mobile business Lindell MK (2013) Emergency management. In: Bobrowsky PT (ed) Encyclopedia of Natural Hazards. Springer, Dotrecht, pp 263–271 Lindell MK, Perry RW (2012) The protective action decision model: theoretical modifications and additional evidence. Risk Anal 32:616–632. https://doi.org/10.1111/j.1539-6924.2011.01647.x Maddux JE, Rogers RW (1983) Protection motivation and self-efficacy: a revised theory of appeals and attitude change. J Exp Soc Psychol 19:469–479 Martin IM, Bender H, Raish C (2007) What motivates individuals to protect themselves from risks: the case of wildland fires. Risk Anal 27:887–900 Mayhorn CB, Yim M, Orrock JA (2006) Warnings and hazard communication for natural and technological disasters. In: Wogalter MS (ed) Handbook of warnings. Lawrence Erlbaum Associates, Mahwah, pp 763–769 McCaughey JW, Mundir I, Daly P, Mahdi S, Patt A (2017) Trust and distrust of tsunami vertical evacuation buildings: extending protection motivation theory to examine choices under social influence. Int J Disaster Risk Reduct 24:462–473. https://doi.org/10.1016/j.ijdrr.2017.06.016 Meissen U, Hardt M, Voisard A (2014) Towards a general system design for community-centered crisis and emergency warning systems. In: Proceedings of the 11th international conference on information systems for crisis response, pp 155–159 Menard P, Bott GJ, Crossler RE (2017) User motivations in protecting information security: protection motivation theory versus self-determination theory. J Manag Inf Syst 34:1203–1230. https://doi.org/10.1080/07421222.2017.1394083 Milne S, Sheeran P, Orbell S (2000) Prediction and intervention in health-related behavior: a meta-analytic review of protection motivation theory. J Appl Soc Psychol 30:106–143 Ortiz de Guina A, Markus ML (2009) Why break the habit of a lifetime? Rethinking the roles intention, habit, and emotion in continuing information technology use. MIS Q 33:433–444 Podsakoff PM, MacKenzie SB, Lee J-Y, Podsakoff NP (2003) Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol 88(5):S.879–903. https://doi.org/10.1037/0021-9010.88.5.879 Posey C, Roberts TL, Lowry PB (2016) The impact of organizational commitment on insiders’ motivation to protect organizational information assets. J Manag Inf Syst 32:179–214 Pura M (2005) Linking perceived value and loyalty in location-based mobile services. Managing Serv Qual Int J 15(6):509–538 Reinartz W, Haenlein M, Henseler J (2009) An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Market 26:332–344 Reuter C, Kaufhold M, Leopold I, Knipp H (2017) KATWARN, NINA, or FEMA? Multi-method study on distribution, use, and public views on crisis apps. In: Proceedings of the 25th European conference on information systems Rogers RW (1975) A protection motivation theory of fear appeals and attitude change. J Psychol 91:93–114 Rogers RW (1983) Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. In: Cacioppo JT (ed) Social psychophysiology—a sourcebook. Guilford, New York, pp 153–176 Shaikh AA, Karjaluoto H (2015) Making the most of information technology & systems usage: a literature review, framework and future research agenda. Comput Human Behav 49:541–566. https://doi.org/10.1016/j.chb.2015.03.059 Susanto TD, Goodwin R (2013) User acceptance of SMS-based e-government services: differences between adopters and non-adopters. Gov Inf Q 30:486–497. https://doi.org/10.1016/j.giq.2013.05.010 Tan ML, Prasanna R, Stock K, Hudson-Doyle E, Leonard G, Johnston D (2017) Mobile applications in crisis informatics literature: a systematic review. Int J Disaster Risk Reduct 24:297–311. https://doi.org/10.1016/j.ijdrr.2017.06.009 Thieken AH, Kreibich H, Müller M, Merz B (2007) Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol Sci J 52:1016–1037 Trang S, Trenz M, Weiger WH, Tarafdar M, Cheung CMK (2020) One app to trace them all? Examining app specifications for mass acceptance of contact-tracing apps. Eur J Inf Syst 29:415–428. https://doi.org/10.1080/0960085X.2020.1784046 Valtonen E, Addams-Moring R, Virtanen T, Järvinen A, Moring M (2004) Emergency announcements to mobile user devices in geographically defined areas. In: Proceedings of the 1st international conference on information systems for crisis response and manag, pp 151–156 van der Heijden H (2004) User acceptance of hedonic information systems. MIS Q 28:695. https://doi.org/10.2307/25148660 Vedadi A, Warkentin M (2020) Can secure behaviors be contagious? A two-stage investigation of the influence of herd behavior on security decisions. JAIS. https://doi.org/10.17705/1jais.00607 Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag Sci 46:186–204 Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: toward a unified view. MIS Q 27:425–478 Venkatesh V, Thong JYL, Xu X (2016) Unified theory of acceptance and use of technology: a synthesis and the road ahead. J Assocr Inf Syst 17:328–376 Warkentin M, Johnston AC, Shropshire J, Barnett WD (2016) Continuance of protective security behavior: a longitudinal study. Decis Support Syst 92:25–35. https://doi.org/10.1016/j.dss.2016.09.013 Weinstein ND (1989) Effects of personal experience on self-protective behavior. Psychol Bull 105:31–50 Zeit online (2020) Warntag: Katastrophenschutz-Präsident offenbar vor Ablösung. https://www.zeit.de/gesellschaft/zeitgeschehen/2020-09/warntag-fehlschlag-horst-seehofer-katastrophenschutzamt-praesident-entlassung. Accessed 26 Oct 2020 Zhang L, McDowell WC (2009) Am I really at risk? Determinants of online users’ intentions to use strong passwords. J Internet Commer 8:180–197