A Proof of Girsanov’s Theorem: The Henstock–Kurzweil Approach
Tóm tắt
In this paper, we will give a proof of Girsanov’s theorem for Wiener integrals using the Henstock–Kurzweil approach. The approach is by Riemann sums.
Tài liệu tham khảo
Boonpongkrong, V., De Lara-Tuprio, E.P.: Transformation and differentiation of Henstock–Wiener integrals. accepted
Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Ann. Math. 45(2), 386–396 (1944)
Chew, T.S., Lee, P.Y.: The Henstock–Wiener integral. In: Proceeding of Symposium on Real Analysis (Xiamen 1993), J. Math. Study 27(1), 60–65 (1994)
Girsanov, I.V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5(3), 285–301 (1960)
Henstock, R.: Lectures on the Theory of Integration. World Scientific, Singapore (1988)
Kurzweil, J.: Henstock–Kurzweil Integration: Its Relation to Topological Vector Spaces. World Scientific, Singapore (2000)
Lee, P.Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, Cambridge (2000)
Ma, Z.M., Lee, P.Y., Chew, T.S.: Absolute integration using Vitali covers. Real Anal. Exch. 18, 409–419 (1992–1993)
Muldowney, P.: A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration. Wiley, Hoboken (2012)
Yang, C.H.: Measure theory and the Henstock–Wiener integral, M.Sc. thesis, NUS (1998)
Yang C.H., Chew, T.S.: On McShane–Wiener integral. In: Proceeding of International Mathematics Conference (Manila 1998), Matimyas Math., 22(2), 39–46 (1999)