A Proof of Girsanov’s Theorem: The Henstock–Kurzweil Approach

Varayu Boonpogkrong1
1Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand

Tóm tắt

In this paper, we will give a proof of Girsanov’s theorem for Wiener integrals using the Henstock–Kurzweil approach. The approach is by Riemann sums.

Tài liệu tham khảo

Boonpongkrong, V., De Lara-Tuprio, E.P.: Transformation and differentiation of Henstock–Wiener integrals. accepted Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Ann. Math. 45(2), 386–396 (1944) Chew, T.S., Lee, P.Y.: The Henstock–Wiener integral. In: Proceeding of Symposium on Real Analysis (Xiamen 1993), J. Math. Study 27(1), 60–65 (1994) Girsanov, I.V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5(3), 285–301 (1960) Henstock, R.: Lectures on the Theory of Integration. World Scientific, Singapore (1988) Kurzweil, J.: Henstock–Kurzweil Integration: Its Relation to Topological Vector Spaces. World Scientific, Singapore (2000) Lee, P.Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, Cambridge (2000) Ma, Z.M., Lee, P.Y., Chew, T.S.: Absolute integration using Vitali covers. Real Anal. Exch. 18, 409–419 (1992–1993) Muldowney, P.: A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration. Wiley, Hoboken (2012) Yang, C.H.: Measure theory and the Henstock–Wiener integral, M.Sc. thesis, NUS (1998) Yang C.H., Chew, T.S.: On McShane–Wiener integral. In: Proceeding of International Mathematics Conference (Manila 1998), Matimyas Math., 22(2), 39–46 (1999)