A Proactive Nonlinear Disturbance Compensator for the Quarter Car

Johannes N. Strohm1, Dominik Pech1, Boris Lohmann1
1Department of Mechanical Engineering, Technical University of Munich, Garching, Germany

Tóm tắt

A new Proactive Nonlinear Disturbance Compensator (PNDC) for vibration damping in a quarter car is presented. A Flatness Based Disturbance Compensator (FBDC) for a nonlinear quarter car model is derived that decouples the chassis acceleration completely from the known road disturbance. This leads to a high level of driving comfort but to a loss in driving safety. Therefore a Proactive Linear Disturbance Compensator (PLDC) is added. This controller uses knowledge of the future road disturbance to reach a compromise between driving safety and driving comfort. The sensitivity of the nonlinear, proactive disturbance compensator to varying parameters or measurement noise is examined in simulations, and the tuning of the design parameters is shown. Furthermore, results from experiments on the institute's quarter car test stand are discussed. These have shown that the performance of the proposed method exceeds a linear quadratic regulator in simulations and experiments and that the driving comfort can be increased by more than fifty percent without a decrease in driving safety.

Tài liệu tham khảo

M. Mitschke and H. Wallentowitz, Dynamik der Kraft-fahrzeuge, 5th ed., Springer Vieweg, Wiesbaden, 2014. S. M. Savaresi, C. Poussot-Vassal, and C. Spelta, Semi-Active Suspension Control Design for Vehicles, 1st ed., Elsevier professional, 2010. H. E. Tseng and D. Hrovat, “State of the art survey: Active and semi-active suspension control,” Veh. Syst. Dyn., vol. 53, no. 7, pp. 1034–1062, 2015. R. S. Sharp and D. A. Crolla, “Road vehicle suspension system design - a review,” Veh. Syst. Dyn., vol. 16, no. 3, pp. 167–192, 1987. W. D. Jones, “Easy ride - Bose Corp. uses speaker technology to give cars adaptive suspension,” IEEE Spectrum, vol. 42, no. 3, pp. 12–14, 2005. G. Koch, O. Fritsch, and B. Lohmann, “Potential of low bandwidth active suspension control with continuously variable damper,” Control Eng. Pract., vol. 18, no. 11, pp. 1251–1262, 2010. R. S. Sharp and S. A. Hassan, “On the performance capabilities of active automobile suspension systems of limited bandwidth,” Veh. Syst. Dyn., vol. 16, no. 4, pp. 213–225, 1987. D. Karnopp, M. J. Crosby, and R. A. Harwood, “Vibration control using semi-active force generators,” J. Eng. Ind., vol. 96, no. 2, p. 619, 1974. S. Chen, Y. Cai, J. Wang, and M. Yao, “A novel lqg controller of active suspension system for vehicle roll safety,” Int. J. Control Autom. Syst., vol. 16, no. 5, pp. 2203–2213, 2018. D. Hrovat, “Survey of advanced suspension developments and related optimal control applications,” Automatica, vol. 33, no. 10, pp. 1781–1817, 1997. C. Yue, T. Butsuen, and J. K. Hedrick, “Alternative control laws for automotive active suspensions,” J. Dyn. Syst. T ASME, vol. 111, no. 2, p. 286, 1989. C. Lauwerys, J. Swevers, and P. Sas, “Robust linear control of an active suspension on a quarter car testrig,” Control Eng. Pract., vol. 13, no. 5, pp. 577–586, 2005. M. Yamashita, K. Fujimori, C. Uhlik, R. Kawatani, and H. Kimura, “H∞ control of an automotive active suspension,” Proc. of 29th IEEE Conference on Decision and Control, pp. 2244–2250 vol. 4, IEEE, 1990. D. Sammier, O. Sename, and L. Dugard, “Skyhook and H8 control of semi-active suspensions: Some practical aspects,” Veh. Syst. Dyn., vol. 39, no. 4, pp. 279–308, 2003. G. Koch, Adaptive control of mechatronic vehicle suspension systems, PhD thesis, Technische Universität München, München, 2011. H. Le Nguyen, K.-S. Hong, and S. Park, “Road-frequency adaptive control for semi-active suspension systems,” Int. J. Control Autom. Syst., vol. 8, no. 5, pp. 1029–1038, 2010. A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active suspensions,” IEEE Trans. Control Syst. Technol., vol. 3, no. 1, pp. 94–101, 1995. A. Hać, “Adaptive control of vehicle suspension,” Veh. Syst. Dyn., vol. 16, no. 2, pp. 57–74, 1987. N. Pletschen, “Nonlinear H2 control of a low-bandwidth active vehicle suspension system using Takagi-Sugeno methods,” in Advanced Vehicle Control AVEC'16 (J. Edelmann, M. Plöchl, and P. E. Pfeffer, eds.), pp. 663–672, Crc Press, 2016. A. Alleyne and J. K. Hedrick, “Nonlinear control of a quarter car active suspension,” Proc. of American Control Conference, pp. 21–25, 1992. R. J. Hampo and K. A. Marko, “Investigation of the application of neural networks to fault tolerant control of an active suspension system,” Proc. of American Control Conference, pp. 11–15, IEEE, 1992. Ş. Yildirim, “Vibration control of suspension systems using a proposed neural network,” Journal of Sound and Vibration, vol. 277, no. 4-5, pp. 1059–1069, 2004. A. Moran and M. Nagai, “Optimal active control of nonlinear vehicle suspensions using neural networks,” JSME International Journal. Ser. C, Dynamics, Control, Robotics, Design and Manufacturing, vol. 37, no. 4, pp. 707–718, 1994. I. Bucak and H. R. Öz, “Vibration control of a nonlinear quarter-car active suspension system by reinforcement learning,” Int. J. Syst. Sci., vol. 43, no. 6, pp. 1177–1190, 2012. S. Barton-Zeipert, Fahrbahnprofilerfassung für ein aktives Fahrwerk, PhD thesis, Helmut-Schmidt-Universität, Hamburg, 01.01.2014. A. Schindler, Neue Konzeption und erstmalige Real-isierung eines aktiven Fahrwerks mit Preview-Strategie, Ph.D. thesis, vol. 31 of Schriftenreihe des Instituts für Angewandte Informatik - Automatisierungstechnik, Uni-versität Karlsruhe, KIT Scientific Publ, Karlsruhe, 2009. M. Donahue and J. K. Hedrick, Implementation of an Active Suspension Preview Controller for Improved Ride Comfort, Diploma Thesis, Department of Mechanical Engineering, University of California at Berkely, 2001. C. Göhrle, A. Schindler, A. Wagner, and O. Sawodny, “Road profile estimation and preview control for low-bandwidth active suspension systems,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2299–2310, 2015. J. C. Tudon-Martinez, S. Fergani, O. Sename, J. J. Martinez, R. Morales-Menendez, and L. Dugard, “Adaptive road profile estimation in semiactive car suspensions,” IEEE Trans. Control Syst. Technol., vol. 23, no. 6, pp. 2293–2305, 2015. E. K. Bender, “Optimum linear preview control with application to vehicle suspension,” J. Basic Eng., vol. 90, no. 2, pp. 213–221, 1968. M. Tomizuka, “‘Optimum linear preview control with application to vehicle suspension’-revisited,” J. Dyn. Syst. T ASME, vol. 98, no. 3, p. 309, 1976. A. G. Thompson, B. R. Davis, and C. E. M. Pearce, “An optimal linear active suspension with finite road preview,” SAE Technical Paper Series, SAE International, 1980. A. Hać, “Optimal linear preview control of active vehicle suspension,” Veh. Syst. Dyn., vol. 21, no. 1, pp. 167–195, 1992. R. S. Sharp and C. Pilbeam, “On the ride comfort benefits available from road preview with slow-active car suspensions,” Veh. Syst. Dyn., vol. 23, no. sup1, pp. 437–448, 1994. N. Louam, D. A. Wilson, and R. S. Sharp, “Optimal control of a vehicle suspension incorporating the time delay between front and rear wheel inputs,” Veh. Syst. Dyn., vol. 17, no. 6, pp. 317–336, 1988. A. Akbari and B. Lohmann, “Output feedback H∞/GH2 preview control of active vehicle suspensions: A comparison study of LQG preview,” Veh. Syst. Dyn., vol. 48, no. 12, pp. 1475–1494, 2010. H. D. Choi, C. J. Lee, and M. T. Lim, “Fuzzy preview control for half-vehicle electro-hydraulic suspension system,” Int. J. Control Autom. Syst., vol. 16, no. 5, pp. 2489–2500, 2018. C. Göhrle, A. Schindler, A. Wagner, and O. Sawodny, “Design and vehicle implementation of preview active suspension controllers,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1135–1142, 2014. R. K. Mehra, J. N. Amin, K. J. Hedrick, C. Osorio, and S. Gopalasamy, “Active suspension using preview information and model predictive control,” Proceedings of the 1997 IEEE International Conference on Control Applications, pp. 860–865, Oct 1997. C. Poussot-Vassal, S. M. Savaresi, C. Spelta, O. Sename, and L. Dugard, “A methodology for optimal semi-active suspension systems performance evaluation,” Proc. of 49th IEEE Conference on Decision and Control (CDC), pp. 2892–2897, IEEE, 2010. M. Canale, M. Milanese, and C. Novara, “Semi-active suspension control using “fast” model-predictive techniques,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, pp. 1034–1046, 2006. K. M. Madhavan Rathai, M. Alamir, O. Sename, and R. Tang, “A parameterized nmpc scheme for embedded control of semi-active suspension system,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 301–306, 2018. K. M. Madhavan Rathai, M. Alamir, and O. Sename, “Experimental implementation of model predictive control scheme for control of semi-active suspension system,” IFAC-PapersOnLine, vol. 52, no. 5, pp. 261–266, 2019. M. M. Morato, M. Q. Nguyen, O. Sename, and L. Dugard, “Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle,” J. Franklin Inst., vol. 356, no. 3, pp. 1196–1224, 2019. J. N. Strohm and B. Lohmann, “Optimal feedforward preview control by FIR filters,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5115–5120, 2017. J. N. Strohm and B. Lohmann, “Vorausschauende Stör-größenaufschaltung für die Schwingungsdämpfung am Viertelfahrzeug,” at - Automatisierungstechnik, vol. 65, no. 8, 2017. P. Krauze and J. Kasprzyk, “Vibration control in quarter-car model with magnetorheological dampers using FxLMS algorithm with preview,” Proc. of European Control Conference (ECC), pp. 1005–1010, IEEE, 2014. J. N. Strohm and B. Lohmann, “A fast convergence fxlms algorithm for vibration damping of a quarter car,” Proc. of IEEE Conference on Decision and Control (CDC), pp. 6094–6100, Dec 2018. A. Moran and M. Nagai, “Optimal preview control of rear suspension using nonlinear neural networks,” Veh. Syst. Dyn., vol. 22, no. 5-6, pp. 321–334, 1993. B. Lohmann, “Flatness based disturbance compensation,” Scientific Report, Institute of Automation, University of Bremen, 2002. J. Deutscher and B. Lohmann, “Flatness based asymptotic disturbance rejection for linear and nonlinear systems,” Proc. of European Control Conference (ECC), pp. 3183–3188, 2003. P. Rouchon, M. Fliess, J. L. Évine, and P. Martin, “Flatness and motion planning: the car with n trailers,” Proc. European Control Conference, pp. 1518–1522, 1993. A. Isidori, Nonlinear Control Systems, Communications and Control Engineering Series, Springer, 3rd ed., Berlin, 2002. C. R. Cutler and B. L. Ramaker, “Dynamic matrix control - a computer control algorithm,” Proc. of Joint Automatic Control Conference, vol. 1980, 1980. S. Spirk, Modulare vertikaldynamische Regelungskonzepte für ein hybrid aktuiertes Fahrwerk, Fahrzeugtechnik, München, Dr. Hut, 2016. F. Tyan, Y.-F. Hong, S.-H. Tu, and W. S. Jeng, “Generation of random road profiles,” CSME, vol. 4, no. 2, pp. 151–156, 2009. J. Wu, Z. Liu, and W. Chen, “Design of a piecewise affine H8 controller for MR semiactive suspensions with nonlinear constraints,” IEEE Trans. Control Syst. Technol., vol. 27, no. 4, pp. 1762–1771, 2019. International Organization for Standardization, “Mechanical vibration and shock - evaluation of human exposure to whole-body vibration,” 1997-05. VDI-Fachbereich Schwingungstechnik, “Human exposure to mechanical vibrations - whole-body vibration,” 2012. G. Koch, E. Pellegrini, S. Spirk, N. Pletschen, and B. Lohmann, “Actuator control for a hybrid suspension system,” Technical Reports on Automatic Control, Chair of Automatic Control, Technical University of Munich, 2011. J. Adamy, Nichtlineare Systeme und Regelungen, Springer, Berlin, Heidelberg, 2014. J. Lévine, Analysis and Control of Nonlinear Systems: A Flatness-based Approach, Mathematical Engineering, Springer-Verlag, Berlin, Heidelberg, 2009. R. Streiter, “ABC pre-scan im F700,” ATZ - Automobiltech-nische Zeitschrift, vol. 110, no. 5, pp. 388–397, 2008.