A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms

Laurent Condat1
1GIPSA-Lab, CNRS—Grenoble Institute of Technology, St. Martin d’Hères Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm. Phys. Med. Biol. 57(10), 3065–3091 (2012)

Mercier, B.: Topics in Finite Element Solution of Elliptic Problems. Lectures on Mathematics, vol. 63. Tata Institute of Fundamental Research, Bombay (1979)

Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. Ph.D. Thesis, MIT, Cambridge, MA (1989)

Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Math. Acad. Sci. 255, 2897–2899 (1962)

Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2010)

Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Series Comp. Appl. Math, vol. 9, pp. 263–340. de Gruyter, Berlin (2010)

Becker, S., Candès, E., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3(3), 165–218 (2011)

Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method (2010). Preprint, submitted to Math. Program.

Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal–dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2010)

He, B.S., Yuan, X.M.: Convergence analysis of primal–dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

Pesquet, J.C., Pustelnik, N.: A parallel inertial proximal optimization method. Pac. J. Optim. 8(2), 273–305 (2012)

Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)

Combettes, P.L., Dũng, D., Vũ, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380(2), 680–688 (2011)

Combettes, P.L., Pesquet, J.C.: Primal–dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)

Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)

Raguet, H., Fadili, J., Peyré, G.: Generalized forward–backward splitting (2011). Preprint. arXiv:1108.4404

Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. (2011, to appear). Preprint. arXiv:1110.1697 . doi: 10.1007/s10444-011-9254-8

Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, Amsterdam, Netherlands (1983)

Tseng, P.: Applications of splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

Chen, H.G.: Forward–backward splitting techniques: theory and applications. Ph.D. Thesis, University of Washington, Seattle, WA (1994)

Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

Robinson, S.M.: Composition duality and maximal monotonicity. Math. Program. 85, 1–13 (1999)

Pennanen, T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)

Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

Rockafellar, R.T.: Minimax theorems and conjugate saddle-functions. Math. Scand. 14, 151–173 (1964)

McLinden, L.: An extension of Fenchel’s duality theorem to saddle functions and dual minimax problems. Pac. J. Math. 50, 135–158 (1974)

Chaux, C., Pesquet, J.C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2(2), 730–762 (2009)

Dupé, F.X., Fadili, M.J., Starck, J.L.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18(2), 310–321 (2009)

Fadili, J.M., Peyré, G.: Total variation projection with first order schemes. IEEE Trans. Image Process. 20(3), 657–669 (2011)

Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

Ogura, N., Yamada, I.: Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping. Numer. Funct. Anal. Optim. 23(1–2), 113–137 (2002)

Polyak, B.T.: Introduction to Optimization. Optimization Software, Inc., Publications Division, New York, USA (1987)