A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021

Journal of Earth Science - Tập 33 - Trang 869-884 - 2022
Jin Chen1,2, Hong Tang1,2, Wenkai Chen3, Naisen Yang1,2
1State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, China
2Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing, China
3Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, China

Tóm tắt

Currently available earthquake attenuation equations are locally applicable, and methods based on observation data are not applicable in areas without available observation data. To solve the above problems and further improve the prediction accuracy of ground motion parameters, we present a prediction model referred to as a light gradient boosting machine with feature selection (LGB-FS). It is based on a light gradient boosting machine (LightGBM) constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake. Cases study shows that compared with GMPE methods and those based on real-time observation data, the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake. The feature importance evaluation based on both information gains and partial dependence plots (PDPs) reveals the complex relationships between multiple factors and ground motion parameters, allowing us to better understand their mechanisms and connections.

Tài liệu tham khảo

Abrahamson, N. A., Silva, W. J., Kamai, R., 2014. Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Spectra, 30(3): 1025–1055. https://doi.org/10.1193/070913eqs198m Abrahamson, N., Silva, W., 2008. Summary of the Abrahamson & Silva NGA Ground-Motion Relations. Earthquake Spectra, 24(1): 67–97. https://doi.org/10.1193/L2924360 Akkar, S., Sandıkkaya, M. A., Bommer, J. J., 2014. Empirical Ground-Motion Models for Point- and Extended-Source Crustal Earthquake Scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12(1): 359–387. https://doi.org/10.1007/s10518-013-9461-4 Alavi, A. H., Gandomi, A. H., 2011. Prediction of Principal Ground-Motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing. Computers & Structures, 89(23/24): 2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019 Alavi, A. H., Gandomi, A. H., Modaresnezhad, M., et al., 2011. New Ground-Motion Prediction Equations Using Multi Expression Programing. Journal of Earthquake Engineering, 15(4): 511–536. https://doi.org/10.1080/13632469.2010.526752 Ambraseys, N. N., Douglas, J., 2003. Near-Field Horizontal and Vertical Earthquake Ground Motions. Soil Dynamics and Earthquake Engineering, 23(1): 1–18. https://doi.org/10.1016/S0267-7261(02)00153-7 Ambraseys, N. N., Simpson, K. A., Bommer, J. J., 1996. Prediction of Horizontal Response Spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4): 371–400. https://doi.org/10.1002/(sici)1096-9845(199604)25:4371:aid-eqe550>3.0.co;2-a Aptikaev, F., Kopnichev, J., 1980. Correlation between Seismic Vibration Parameters and Type of Faulting. In: Proceedings of Seventh World Conference on Earthquake Engineering. September 8–13, 1980, Istanbul Boore, D. M., Stewart, J. P., Seyhan, E., et al., 2013. NGA-West2 Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., et al., 2014. NGA-West2 Research Project. Earthquake Spectra, 131(3): 409–444 Breiman, L., Friedman, J. H., Olshen, R. A., et al., 1984. Classification and Regression Trees (CART). Biometrics, 40(3): 874. https://doi.org/10.2307/2530946 Campbell, K. W., 1985. Strong Motion Attenuation Relations: A Ten-Year Perspective. Earthquake Spectra, 1(4): 759–804. https://doi.org/10.1193/1.1585292 Campbell, K. W., Bozorgnia, Y., 2008. NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 S. Earthquake Spectra, 24(1): 139–171. https://doi.org/10.1193/1.2857546 Campbell, K. W., Bozorgnia, Y., 2014. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3): 1087–1115. https://doi.org/10.1193/062913eqs175m Cheng, H. L., Zhou, J. M., Chen, Z. Y., et al., 2021. A Comparative Study of the Seismic Performances and Failure Mechanisms of Slopes Using Dynamic Centrifuge Modeling. Journal of Earth Science, 32(5): 1166–1173. https://doi.org/10.1007/s12583-021-1481-4 Chiou, B. S.-J., Youngs, R. R., 2014. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3): 1117–1153. https://doi.org/10.1193/072813eqs219m Derakhshani, A., Foruzan, A. H., 2019. Predicting the Principal Strong Ground Motion Parameters: A Deep Learning Approach. Applied Soft Computing, 80: 192–201. https://doi.org/10.1016/j.asoc.2019.03.029 Derras, B., Bard, P. Y., Cotton, F., 2014. Towards Fully Data Driven Ground-Motion Prediction Models for Europe. Bulletin of Earthquake Engineering, 12(1): 495–516. https://doi.org/10.1007/s10518-013-9481-0 Derras, B., Bard, P. Y., Cotton, F., et al., 2012. Adapting the Neural Network Approach to PGA Prediction: An Example Based on the KIK-NET Data. Bulletin of the Seismological Society of America, 102(4): 1446–1461. https://doi.org/10.1785/0120110088 Douglas, J., 2003. Earthquake Ground Motion Estimation Using Strong-Motion Records: A Review of Equations for the Estimation of Peak Ground Acceleration and Response Spectral Ordinates. Earth-Science Reviews, 61(1/2): 43–104. https://doi.org/10.1016/S0012-8252(02)00112-5 Friedman, J. H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451 Gandomi, A. H., Alavi, A. H., Mousavi, M., et al., 2011. A Hybrid Computational Approach to Derive New Ground-Motion Prediction Equations. Engineering Applications of Artificial Intelligence, 24(4): 717–732. https://doi.org/10.1016/j.engappai.2011.01.005 Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091–3106. https://doi.org/10.3799/dqkx.2020.360 Heath, D. C., Wald, D. J., Worden, C. B., et al., 2020. A Global Hybrid VS30 Map with a Topographic Slope-Based Default and Regional Map Insets. Earthquake Spectra, 36(3): 1570–1584. https://doi.org/10.1177/8755293020911137 Idriss, I. M., 2013. NGA-West2 Model for Estimating Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley Jafariavval, Y., Derakhshani, A., 2020. New Formulae for Capacity Energy-Based Assessment of Liquefaction Triggering. Marine Georesources & Geotechnology, 38(2): 214–222. https://doi.org/10.1080/1064119x.2019.1566297 Kafaei Mohammadnejad, A., Mousavi, S. M., Torabi, M., et al., 2012. Robust Attenuation Relations for Peak Time-Domain Parameters of Strong Ground Motions. Environmental Earth Sciences, 67(1): 53–70. https://doi.org/10.1007/s12665-011-1479-9 Kayabali, K., Beyaz, T., 2011. Strong Motion Attenuation Relationship for Turkey—A Different Perspective. Bulletin of Engineering Geology and the Environment, 70(3): 467–481. https://doi.org/10.1007/s10064-010-0335-6 Ke, G. L., Meng, Q., Finley, T., et al., 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: NIPS’ 17: Proceeding of the 31st International Conference on Neural Information Processing Systems, December 2017, New York Molnar, C., 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub Nagelkerke, N. J. D., 1991. A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3): 691–692. https://doi.org/10.1093/biomet/78.3.691 Şen, Z., 2011. Supervised Fuzzy Logic Modeling for Building Earthquake Hazard Assessment. Expert Systems with Applications, 38(12): 14564–14573. https://doi.org/10.1016/j.eswa.2011.05.026 Shiuly, A., Roy, N., Sahu, R. B., 2020. Prediction of Peak Ground Acceleration for Himalayan Region Using Artificial Neural Network and Genetic Algorithm. Arabian Journal of Geosciences, 13(5): 1–10. https://doi.org/10.1007/s12517-020-5211-5 Singer, D. A., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288–292. https://doi.org/10.1007/s12583-020-1399-2 Thomas, S., Pillai, G. N., Pal, K., 2017. Prediction of Peak Ground Acceleration Using ϵ-SVR, N-SVR and Ls-SVR Algorithm. Geomatics, Natural Hazards and Risk, 8(2): 177–193. https://doi.org/10.1080/19475705.2016.1176604 Tobler, W. R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46(Sup1): 234–240. https://doi.org/10.2307/143141 Tuv, E., Borisov, A., Runger, G., et al., 2009. Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination. Journal of Machine Learning Research, 10(3): 1341–1366. https://doi.org/10.1145/1577069.1755828 Wen, R. Z., Xu, P. B., Ren, Y. F., et al., 2017. Development of the Strong-Motion Flatfile. Earthquake Engineering and Engineering Dynamics, 37(3): 38–47. https://doi.org/10.13197/j.eeev.2017.03.38.wenrz.004 (in Chinese with English Abstract) Worden, C. B., Wald, D. J., Allen, T. I., et al., 2010. A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap. Bulletin of the Seismological Society of America, 100(6): 3083–3096. https://doi.org/10.1785/0120100101 Yenier, E., Erdoğan, Ö., Akkar, S., 2008. Empirical Relationships for Magnitude and Source-to-Site Distance Conversions Using Recently Compiled Turkish Strong-Ground Motion Database. In: The 14th World Conference on Earthquake Engineering. October 12–17, 2008, Beijing Youngs, R. R., Chiou, B. S.-J., Silva, W. J., et al., 1997. Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes. Seismological Research Letters, 68(1): 58–73. https://doi.org/10.1785/gssrl.68.1.58 Youngs, R. R., Day, S. M., Stevens, J. L., 1988. Near Field Ground Motions on Rock for Large Subduction Earthquakes. In: Thun, J. L. V., ed., Earthquake Engineering and Soil Dynamics II: Recent Advances in Ground-Motion Evaluation. American Society of Civil Engineers, Reston. 445–462 Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350–358. https://doi.org/10.3799/dqkx.2020.111