A Practical Sequential Stopping Rule for High-Dimensional Markov Chain Monte Carlo
Tóm tắt
Từ khóa
Tài liệu tham khảo
Banerjee S., 2004, Hierarchical Modeling and Analysis for Spatial Data
Best, N., Cowles, M., and Vines, S. (1995), Coda Manual Version 0.30 (Vol. 46), Cambridge, UK: MRC Biostatistics Unit, pp. 2020–2027.
Brooks S., 2010, Handbook of Markov Chain Monte Carlo: Methods and Applications
Finley, A.O., Banerjee, S. (2013), spBayes: Univariate and Multivariate Spatial Modeling R Package Version 0.3–7, available at http://CRAN.R-project.org/package=spBayes.
Flegal J.M., 2015, Statistica Sinica, 25, 655
Flegal, J.M., Hughes, J. (2012), mcmcse: Monte Carlo Standard Errors for MCMC R Package Version 1.0-1, available at http://cran.r-project.org/web/packages/mcmcse/index.html.
Geweke J., 1992, Bayesian Statistics 4. Proceedings of the Fourth Valencia International Meeting, 169
Geyer C.J., 1992, Journal of the Royal Statistical Society, 54, 657, 10.1111/j.2517-6161.1992.tb01443.x
Keller T., 2001, Annual Convention of the Psychonomic Society
Kish L., 1965, Survey Sampling
Wang, X., Mitchell, T. (2002), Detecting Cognitive States Using Machine Learning, Technical Report, Iterim Working Paper, CMU CALD Technical Report for Summer Work.