A Particle Filtering Approach for Tracking an Unknown Number of Objects with Dynamic Relations

Luca Cattelani1, Cristina Manfredotti2, Enza Messina1
1MIND Laboratory, DISCo Computer Science Department, University of Milano-Bicocca, Milano, Italy
2Image Group, E-Science Centre, Department of Computer Science (DIKU), University of Copenhagen, Copenhagen, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pellegrini, S., Ess, A., Gool, L.V.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: ECCV 2010, Part I, LNCS 6311, pp. 452–465 (2010)

Cappé, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proc. I.E.E.E. 95, 899–924 (2007)

Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)

Pitt, K., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

Manfredotti, C.E., Messina, E.: Relational dynamic Bayesian networks to improve multi-target tracking. Lect. Notes Comput. Sci. 5807, 528–539 (2009)

Ng, W., Li, J., Godsill, S., Vermaak, J.: Tracking variable number of targets using sequential Monte Carlo methods. In: Proceedings of the IEEE/SP 13th Workshop on Statistical Signal Processing, pp. 1286–1291. Bordeaux, France (2005)

Copsey, K., Webb, A.: Bayesian networks for incorporation of contextual information in target recognition systems. In: SSPR/SPR. Slov. Prav. Regist., vol. 2396, pp. 709–717 (2002)

Manfredotti, C.E., Fleet, D.J., Hamilton, H.J., Zilles, S.: Simultaneous Tracking and Activity Recognition. IEEE 23rd International Conference on Tools with Artificial Intelligence (ICTAI), Boca Raton, FL, USA, 189–196 (2011)

Manfredotti, C.E.: Modeling and inference with relational dynamic Bayesian networks. In: Canadian Conference on AI, pp. 287–290 (2009)

Jaward, M., Mihaylova, L., Canagarajah, N., Bull, D.: Multiple object tracking using particle filters. IEEE Aerosp. Conf. 2151–2158 (2006). doi: 10.1109/AERO.2006.1655926

Smith, K., Gatica-Perez, D., Odobez, J.M.: Using particles to track varying numbers of interacting people. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 962–969 (2005)

Wang, C.C., Lo, T.C., Yang, S.W.: Interacting object tracking in crowded urban areas. In: IEEE International Conference on Robotics and Automation, pp. 4626–4632 (2007)

Khan, Z., Balch, T.R., Dellaert, F.: An MCMC-based particle filter for tracking multiple interacting targets. In: ECCV, vol. 3024, pp. 279–290 (2004)

Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Stone, M.C. (ed.) Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’87), pp. 25–34. ACM, New York, NY, USA (1987)

Pang, S.K., Li, J., Godsill, S.J.: Models and algorithms for detection and tracking of coordinated groups. IEEE Aerosp. Conf. 1–17 (2008). doi: 10.1109/AERO.2008.4526445

Gning, A., Mihaylova, L., Maskell, S., Pang, S.K., Godsill, S.: Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Trans. Sign. Process. 59(3), 1383–1396 (2011)

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sign. Process. 50(2), 174–188 (2002)

Jaeger, M.: Relational Bayesian networks. In: Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence, pp. 266–273. San Francisco (1997)

Manfredotti, C.E., Fleet, D.J., Messina, E.: Relations to improve multi-target tracking in an activity recognition system. In: 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP-09), pp. 1–6. London (2009)

Cattelani, L., Manfredotti, C.E., Messina, E.: Multiple object tracking with relations. In: Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, pp. 459–466 (2012)

Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93, 1032–1044 (1998)

Schuhmacher, D., Vo, B.T., Vo, B.N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Sign. Process. 56(7), 3447–3457 (2008)

Song, B., Vaswani, N., Roy-Chowdhury, A.K.: Closed-loop tracking and change detection in multi-activity sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

Brambilla, M., Cattelani, L.: Mobility analysis inside buildings using Distrimobs simulator: a case study. Building and Environment 44(2), 595–604 (2009)

Vermaak, J., Ikoma, N., Godsill, S.J.: Extended object tracking using particle techniques. In: IEEE Aerospace Conference Proceedings, vol. 3, pp. 1876–1885. Big Sky, MT, 6–13 March 2004

Brasnett, P., Mi haylova, L., Canagarajah, N., Bull, D.: Particle filtering with multiple cues for object tracking in video sequences. In: IS & T/SPIE’s 17th Annual Symposium on Electronic Imaging, Science and Technology, pp. 430–441. San Jose, California, USA (2005)