A Parallel-Structure-Based Sliding Mode Control for Trajectory Tracking of a Quadrotor UAV
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cao N, Lynch AF (2016) Inner–outer loop control for quadrotor UAVS with input and state constraints. IEEE Trans Control Syst Technol 24(5):1797–1804. https://doi.org/10.1109/TCST.2015.250564
Chen M, Xiong S, Wu Q (2021) Tracking flight control of quadrotor based on disturbance observer. IEEE Trans Syst Man Cybern-Syst 51(3):1414–1423. https://doi.org/10.1109/TSMC.2019.289689
Zhang X, Wang Y, Zhu G, Chen X, Li Z, Wang C, Su C-Y (2021) Compound adaptive fuzzy quantized control for quadrotor and its experimental verification. IEEE Trans Cybern 51(3):1121–1133. https://doi.org/10.1109/TCYB.2020.298781
Yu G, Cabecinhas D, Cunha R, Silvestre C (2019) Nonlinear backstepping control of a quadrotor-slung load system. IEEE-ASME Trans Mechatron 24(5):2304–2315. https://doi.org/10.1109/TMECH.2019.293021
Liu J, Gai W, Zhang J, Li Y (2019) Nonlinear adaptive backstepping with ESO for the quadrotor trajectory tracking control in the multiple disturbances. Int J Control Automat Syst 17(11):2754–2768. https://doi.org/10.1007/s12555-018-0909-
Razmi H, Afshinfar S (2019) Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerosp Sci Technol 91:12–27. https://doi.org/10.1016/j.ast.2019.04.05
Xiong J, Pan J, Chen G, Zhang X, Ding F (2022) Sliding mode dual-channel disturbance rejection attitude control for a quadrotor. IEEE Trans Ind Electron 69(10):10489–10499. https://doi.org/10.1109/TIE.2021.3137600
Rekabi F, Shirazi FA, Sadigh MJ (2020) Distributed nonlinear H-infinity control algorithm for multi-agent quadrotor formation flying. ISA Trans 96:81–94. https://doi.org/10.1016/j.isatra.2019.04.03
Noormohammadi-Asl A, Esrafilian O, Arzati MA, Taghirad HD (2020) System identification and H-infinity-based control of quadrotor attitude. Mech Syst Signal Process 135:10635. https://doi.org/10.1016/j.ymssp.2019.10635
Mu B, Shi Y (2018) Distributed LQR consensus control for heterogeneous multiagent systems: theory and experiments. IEEE-ASME Trans Mechatron 23(1):434–443. https://doi.org/10.1109/TMECH.2018.279154
Mahmoodabadi MJ, Babak NR (2020) Robust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm optimization for a 4 degree-of-freedom quadrotor. Aerosp Sci Technol 97:10559. https://doi.org/10.1016/j.ast.2019.10559
Tripathi VK, Kamath AK, Behera L, Verma NK, Nahavandi S (2020) Finite-time super twisting sliding mode controller based on higher-order sliding mode observer for real-time trajectory tracking of a quadrotor. IET Control Theory Appl 14(16):2359–2371. https://doi.org/10.1049/iet-cta.2020.034
Kahouadji M, Mokhtari MR, Choukchou-Braham A, Cherki B (2020) Real-time attitude control of 3 DOF quadrotor UAV using modified super twisting algorithm. J Frank Inst-Eng Appl Math 357(5):2681–2695. https://doi.org/10.1016/j.jfranklin.2019.11.03
Zhang Y, Chen Z, Zhang X, Sun Q, Sun M (2018) A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerosp Sci Technol 79:601–609. https://doi.org/10.1016/j.ast.2018.06.01
Yang H, Cheng L, Xia Y, Yuan Y (2018) Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans Control Syst Technol 26(4):1400–1405. https://doi.org/10.1109/TCST.2017.271095
Maqsood H, Qu Y (2020) Nonlinear disturbance observer based sliding mode control of quadrotor helicopter. J Electr Eng Technol 15(3):1453–1461. https://doi.org/10.1007/s42835-020-00421-
Perozzi G, Efimov D, Biannic J-M, Planckaert L (2018) Trajectory tracking for a quadrotor under wind perturbations: sliding mode control with state-dependent gains. J Frank Inst-Eng Appl Math 355(12):4809–4838. https://doi.org/10.1016/j.jfranklin.2018.04.04
Allahverdy D, Fakharian A, Menhaj MB (2019) Back-stepping integral sliding mode control with iterative learning control algorithm for quadrotor UAVs. J Electr Eng Technol 14(6):2539–2547. https://doi.org/10.1007/s42835-019-00257-
AbdulSamed BN, Aldair AA, Al-Mayyahi A (2020) Robust trajectory tracking control and obstacles avoidance algorithm for quadrotor unmanned aerial vehicle. J Electr Eng Technol 15(2):855–868. https://doi.org/10.1007/s42835-020-00350-
Chen F, Jiang R, Zhang K, Jiang B, Tao G (2016) Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron 63(8):5044–5056. https://doi.org/10.1109/TIE.2016.255215
Rios H, Falcon R, Gonzalez OA, Dzul A (2019) Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans Ind Electron 66(2):1264–1272. https://doi.org/10.1109/TIE.2018.283119
Labbadi M, Cherkaoui M (2020) Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans 99:290–304. https://doi.org/10.1016/j.isatra.2019.10.01
Zheng E-H, Xiong J-J, Luo J-L (2014) Second order sliding mode control for a quadrotor UAV. ISA Trans 53(4, SI):1350–1356. https://doi.org/10.1016/j.isatra.2014.03.01
Xiong J-J, Zhang G-B (2017) Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans 66:233–240. https://doi.org/10.1016/j.isatra.2016.09.01
Zeghlache S, Mekki H, Bouguerra A, Djerioui A (2018) Actuator fault tolerant control using adaptive RBFNN fuzzy sliding mode controller for coaxial octorotor UAV. ISA Trans 80:267–278. https://doi.org/10.1016/j.isatra.2018.06.00
Tilki U, Erust AC (2021) Robust adaptive backstepping global fast dynamic terminal sliding mode controller design for quadrotors. J Intell Robot Syst 103:1–12
Heo J, Chwa D (2021) Robust tracking control using integral sliding mode observer for quadrotors considering motor and propeller dynamics and disturbances. J Electr Eng Technol 16(6):3247–3260. https://doi.org/10.1007/s42835-021-00909-
Wang H, Ye X, Tian Y, Zheng G, Christov N (2016) Model-free-based terminal SMC of quadrotor attitude and position. IEEE Trans Aerosp Electron Syst 52(5):2519–2528. https://doi.org/10.1109/TAES.2016.15030
Li S, Wang Y, Tan J, Zheng Y (2016) Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft. Neurocomputing 216:126–134. https://doi.org/10.1016/j.neucom.2016.07.03
Ghadiri H, Emami M, Khodadadi H (2021) Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances. Aerosp Sci Technol 112:10661. https://doi.org/10.1016/j.ast.2021.10661
Um Y-C, Choi H-L (2022) Integral gamma-sliding mode control for a quadrotor with uncertain time-varying mass and external disturbance. J Electr Eng Technol 17(1):707–716. https://doi.org/10.1007/s42835-021-00929-
Mofid O, Mobayen S (2018) Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans 72:1–14. https://doi.org/10.1016/j.isatra.2017.11.01
Lian S, Meng W, Lin Z, Shao K, Zheng J, Li H, Lu R (2022) Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode. IEEE Trans Ind Electron 69(2):1597–1607. https://doi.org/10.1109/TIE.2021.305701
Xiong J-J, Guo N-H, Mao J, Wang H-D (2023) Self-tuning sliding mode control for an uncertain coaxial octorotor UAV. IEEE Trans Syst Man Cybern-Syst 51(4):2467–2475. https://doi.org/10.1109/TSMC.2022.3193377
Bisheban M, Lee T (2021) Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Trans Control Syst Technol 53(2):1160–1171. https://doi.org/10.1109/TCST.2020.3006184
Liu K, Wang R, Wang X, Wang X (2021) Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp Sci Technol 115:106790. https://doi.org/10.1016/j.ast.2021.106790
Xiong J-J, Zhang G-B, Wang J-X, Yan T-H (2020) Improved sliding mode control for finite-time synchronization of nonidentical delayed recurrent neural networks. IEEE Trans Neural Netw Learn Syst 31(6):2209–2216. https://doi.org/10.1109/TNNLS.2019.292724
He S, Lyu W, Liu F (2021) Robust H-infinity sliding mode controller design of a class of time-delayed discrete conic-type nonlinear systems. IEEE Trans Syst Man Cybern-Syst 51(2):885–892. https://doi.org/10.1109/TSMC.2018.288449