A P system model of swarming and aggregation in a Myxobacterial colony
Tóm tắt
Bacterial communities provide an interesting subject for the study of emergence and complexity as the consequence of many local interactions. In particular, the soil-dwelling social bacterium Myxobacteria demonstrates two distinct types of motility, social motility via the sensing of bacterial slime deposits and adventurous motility. Both modes of motility are governed by local interactions. Using P systems, a membrane computing methodology based on compartmental rewrite rules for modelling computational processes; this work demonstrates how minimal set of rules can model swarming and aggregating behaviour in Myxobacteria bacterial populations. Our model uses a multi-environment P system similar a 2D cellular automaton to represent the substrate environment whilst stochastic rule selection dictates Myxobacterial motion according to behaviour observed in vitro. The rules account for both mechanisms of motility, the deposit and detection of slime, a change in direction due to C-signal induction and the mixing of population numbers. Simulations demonstrate an extensible computational framework for the modelling of bacterial behaviour, with the potential for extension into additional emergent behaviours.
Tài liệu tham khảo
Shimkets, L. J., & Kaiser, D. (1982). Induction of coordinated movement of Myxococcus xanthus cells. Journal of Bacteriology, 152, 45–461.
Kaiser, D., & Crosby, C. (2005). Cell movement and its coordination in swarms of Myxococcus xanthus. Cytoskeleton, 3, 227–245.
Igoshin, O., Goldbeter, A., Kaiser, D., & Oster, G. (2004). A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proceedings of the National Academy of Sciences USA, 101, 15760–15765.
Sliusarenko, O., Neu, J., Zusman, D. R., & Oster, G. (2006). Accordion waves in Myxococcus xanthus. Proceedings of the National Academy of Sciences USA, 103, 1534–1539.
Wu, Y., Chen, N., Rissler, M., Jiang, Y., Kaiser, D., & Alber, M. (2006). CA models of Myxobacteria swarming. In S. E. Yacoubi, B. Chopard, & S. Bandini (Eds.), Cellular automata. ACRI 2006. Lecture notes in computer science (pp. 192–203). Berlin, Heidelberg: Springer.
Welch, R., & Kaiser, D. (2001). Cell behavior in traveling wave patterns of Myxobacteria. Proceedings of the National Academy of Sciences USA, 98, 14907–14912.
Wolgemuth, C., Hoiczyk, E., Kaiser, D., & Oster, G. (2002). How myxobacteria glide. Current Biology, 12, 369–377.
Berleman, J. E., Chumley, T., Cheung, P., & Kirby, J. R. (2006). Rippling is a predatory behavior in Myxococcus xanthus. Journal of Bacteriology, 188, 5888–5895.
Mauriello, E. M., Yang, T., & Zusman, D. R. (2010). Gliding motility revisited: How do the Myxobacteria move without flagella? Microbiology and Molecular Biology Reviews, 74, 229–249.
Muñoz-Dorado, J., Marcos-Torres, F. J., García-Bravo, E., Moraleda-Muñoz, A., & Pérez, J. (2016). Myxobacteria: Moving, killing, feeding, and surviving together. Frontiers in Microbiology, 7, 781.
Mignot, T., Merlie, J. P., Jr., & Zusman, D. R. (2005). Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science, 310, 855–857.
Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61, 108–143.
Pu, Y., Yu, Y., Dong, X. (2006). Simulation of biomolecular processes by using stochastic p systems. In: Proc Workshop on High Performance Computing in the Life Sciences. Ouro Preto.
Sburlan, D. (2006). Non-cooperative P systems with Priorities Characterize PsET0L. In: Freund R, Lojka G, Oswald M, Păun G, editors. Pre-Proc. of sixth international workshop on membrane computing (WMC6), Vienna, pp. 530–539.
Cámara, M. (2006). Quorum sensing: A cell-cell signalling mechanism used to coordinate behavioral changes in bacterial populations. In H. J. Hoogeboom, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing. WMC 2006. Lecture notes in computer science (pp. 42–48). Berlin, Heidelberg: Springer.
Bianco, L., Pescini, D., Siepmann, P., Krasnogor, N., Romero-Campero, F. J., & Gheorghe, M. (2006). Towards a P systems Pseudomonas quorum sensing model. In H. J. Hoogeboom, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing. WMC 2006. Lecture notes in computer science (pp. 197–214). Berlin, Heidelberg: Springer.
Bernardini, F., Gheorghe, M., & Krasnogor, N. (2007). Quorum sensing P systems. Theoretical Computer Science, 371, 20–33.
Terrazas, G., Krasnogor, N., Gheorghe, M., Bernardini, F., Diggle, S., & Cámara, M. (2005). An environment aware P-system model of quorum sensing. In S. B. Cooper, B. Löwe, & L. Torenvliet (Eds.), New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science (pp. 479–485). Berlin, Heidelberg: Springer.
Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A model of the quorum sensing system in Vibrio fischeri using P systems. Artificial Life, 14, 95–109.
Frisco, P., Corne, D.W. (2007). Modeling the dynamics of HIV infection with conformon-p systems and cellular automata. In: Eleftherakis G, Kefalas P, Păun G, Rozenberg G, Salomaa A, editors. Membrane Computing. WMC 2007. Lecture notes in computer science, Berlin, Heidelberg. pp. 21–31.
Cardona, M., Colomer, M. A., Margalida, A., Pérez-Hurtado, I., Pérez-Jiménez, M. J., & Sanuy, D. (2009). A P system based model of an ecosystem of some scavenger birds. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing. WMC 2009. Lecture notes in computer science (pp. 182–195). Berlin, Heidelberg: Springer.
Cardona, M., Colomer, M. A., Pérez-Jiménez, M. J., Sanuy, D., & Margalida, A. (2008). Modeling ecosystems using p systems: The bearded vulture, a case study. In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing. WMC 2008. Lecture Notes in Computer Science (pp. 137–156). Berlin, Heidelberg: Springer.
Colomer, M. A., Pérez-Hurtado, I., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2011). Comparing simulation algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem. Natural Computing, 11, 369–379.
García-Quismondo, M., & Martínez-del-Amor, M. A. (2014). Probabilistic guarded P systems, a new formal modelling framework. International Conference on Membrane Computing., 2014, 193–214.
Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188, 404–425.
Păun, G., Rozenberg, G., Salomaa, A., editors. (2010). The oxford handbook of membrane computing, Oxford University Press, Oxford.
Lu, T., Volfson, D., Tsimring, L., & Hasty, J. (2004). Cellular growth and division in the Gillespie algorithm. Systems Biology, 1, 121–128.
Gillespie, D. T. (1997). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry B, 81, 2340–2361.
Shimkets, L. J. (1990). Social and developmental biology of myxobacteria. Microbiological Reviews, 54, 473–501.
Diggle, P. J. (2003). Statistical analysis of spatial point patterns. New York: Academic Press.
Díaz-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A. (2008). A P-lingua programming environment for membrane computing. In: D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane computing. WMC 2008. Lecture notes in computer science, vol. 5391. Berlin, Heidelberg, pp. 187–203.
Mayne, R., Phillips, N., Adamatzky, A. (2018). Towards experimental P-systems using multivesicular liposomes. arXiv, 2018;1812.05476.
Degond, P., Manhart, A., & Yu, H. (2018). An age-structured continuum model for myxobacteria. Mathematical Models and Methods in Applied Sciences, 29, 1737–1770.
Hendrata, M., Yang, Z., Lux, R., & Shi, W. (2011). Experimentally guided computational model discovers important elements for social behavior in myxobacteria. PLoS One., 2011, 6.