A Numerical Study of the Effect of an Obstacle on the Flow around a Vertical-Axis Wind Turbine

A. E. Bondarev1, A. V. Bondarenko2, V. A. Galaktionov1, V. T. Zhukov1, K. V. Manukovskii3, N. D. Novikova1, O. B. Feodoritova1
1Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
2State Scientific Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
3National Research Center “Kurchatov Institute”, Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Tóm tắt

The results of numerical simulation of a vertical-axis wind turbine (VAWT) based on the solution of three-dimensional Reynolds-averaged Navier–Stokes equations with the Spalart–Allmaras turbulence model are presented. The results of parametric calculations of a viscous compressible flow under conditions simulating urban infrastructure for a helicoid-type wind turbine with three spirally twisted blades are presented.

Từ khóa


Tài liệu tham khảo

V. G. Bobkov, A. E. Bondarev, A. V. Bondarenko, et al., “Numerical simulation of the aerodynamics of vertical-axis wind turbines,” Math. Models Comput. Simul. 13 (4), 604–612 (2021). https://doi.org/10.1134/S2070048221040074 S. V. Andreev, A. E. Bondarev, A. V. Bondarenko, et al., “Modelling and visualisation of blade assembly with complicated shape for power turbine,” Sci. Visualization 7 (4), 1–12 (2015). B. Hand and A. Cashman, “A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application,” Sustainable Energy Technol. Assess. 38, 100646 (2020). https://doi.org/10.1016/j.seta.2020.100646 B. Hand, G. Kelly, and A. Cashman, “Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review,” Sustainable Energy Technol. Assess. 139, 110699 (2021). https://doi.org/10.1016/j.rser.2020.110699 I. V. Abalakin, P. A. Bakhvalov, A. I. Gorobets, A. P. Duben, and T. K. Kozubskaia, “Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Program. 13, 110–125 (2012). I. V. Abalakin, V. G. Bobkov, and T. K. Kozubskaya, “Implementation of the low Mach number method for calculating flows in the NOISEtte software package,” Math. Models Comput. Simul. 9 (6), 688–696 (2017). https://doi.org/10.1134/S2070048217060023 A. E. Bondarev, V. A. Galaktionov, and V. M. Chechetkin, “Analysis of the development concepts and methods of visual data representation in computational physics,” Comput. Math. Math. Phys. 51 (4), 624–636 (2011). https://doi.org/10.1134/S096554251104004X K. N. Volkov, V. N. Emelianov, I. V. Teterina, and M. S. Yakovchuk, “Methods and concepts of vortex flow visualization in the problems of computational fluid dynamics,” Vychisl. Metody Program. 17 (1), 81–100 (2016). Hybrid Supercomputer K-60. http://www.kiam.ru/MVS/resourses/k60.html.