A Numerical Study of Eigenvalues and Eigenfunctions of Fractional Sturm-Liouville Problems via Laplace Transform
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numer. Algorithms, 54(4) (2010), 521–532.
Q. M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos, Solitons & Fractals, 40 (2009), 183–189.
Q. M. Al-Mdallal, On the numerical solution of fractional Sturm-Liouville problems, Int. J. Comput. Math., 87(12) (2010), 2837–2845.
W. O. Amrein, A. M. Hinz, and D. B. Pearson, Sturm-Liouville theory: Past and present, Springer Science & Business Media (2005).
P. R. Antunes and R. A. Ferreira, An augmented-rbf method for solving fractional Sturm-Liouville eigenvalue problems, SIAM J. Sci. Comput., 37(1) (2015), A515–A535.
D. Baleanu, K. Diethelm, and E. Scalas, Fractional calculus: Models and numerical methods, World Scientific, 3 (2012).
J. B. Conway, Functions of one complex variable II, Springer Science & Business Media, 159 (2012).
B. Jin and W. Rundell, An inverse Sturm-Liouville problem with a fractional derivative, J. Comput. Phys., 231(14) (2012), 4954–4966.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204 (2006).
L. Kexue and P. Jigen, Laplace transform and fractional differential equations, Math. Lett., 24(12) (2011), 2019–2023.
A. Neamaty and R. Darzi, Homotopy perturbation method for solving Sturm-Liouville problems of fractional order, J. Oper. Res. Appl., 8 (2011), 61–71.
I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 198 (1998).