A-Numerical Radius and Product of Semi-Hilbertian Operators

Bulletin of the Iranian Mathematical Society - Tập 47 Số 2 - Trang 371-377 - 2021
Ali Zamani1
1Department of Mathematics, Farhangian University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arias, M.L., Corach, G., Gonzalez, M.C.: Lifting properties in operator ranges. Acta Sci. Math. (Szeged) 75(3–4), 635–653 (2009)

Baklouti, H., Feki, K., Sid Ahmed, O.A.M.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

Chorianopoulos, Ch., Karanasios, S., Psarrakos, P.: A definition of numerical range of rectangular matrices. Linear Multilinear Algebra 57(5), 459–475 (2009)

Cojuhari, P., Gheondea, A.: On lifting of operators to Hilbert spaces induced by positive selfadjoint operators. J. Math. Anal. Appl. 304, 584–598 (2005)

Corach, G., Maestripieri, A.L., Stojanoff, D.: Projections in operator ranges. Proc. Am. Math. Soc. 134, 765–778 (2006)

de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehert and Winston, New York (1966)

Fongi, G., Gonzalez, M.C.: Partial isometries and pseudoinverses in semi-Hilbertian spaces. Linear Algebra Appl. 495, 324–343 (2016)

Karami, S., Salemi, A.: Polynomial numerical hulls of the direct sum of two Jordan blocks. Linear Algebra Appl. 585, 209–226 (2020)

Majdak, W., Secelean, N.A., Suciu, L.: Ergodic properties of operators in some semi-Hilbertian spaces. Linear Multilinear Algebra 61(2), 139–159 (2013)

Moslehian, M.S., Xu, Q., Zamani, A.: Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces. Linear Algebra Appl. 591, 299–321 (2020)

Psarrakos, P.: Numerical range of linear pencils. Linear Algebra Appl. 317, 127–141 (2000)

Suciu, L.: Maximum subspaces related to $$A$$-contractions and quasinormal operators. J. Korean Math. Soc. 45(1), 205–219 (2008)

Zamani, A.: $$A$$-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578, 159–183 (2019)

Zhanga, X., Houab, J., He, K.: Maps preserving numerical radius and cross norms of operator products. Linear Multilinear Algebra 57(1), 523–534 (2009)