A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia
Tài liệu tham khảo
Hutson, 2001, Structure and function of branched-chain aminotransferases, Prog. Nucl. Acid Res. Mol. Biol., 70, 175, 10.1016/S0079-6603(01)70017-7
Eliot, 2004, Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations, Ann. Rev. Biochem., 73, 383, 10.1146/annurev.biochem.73.011303.074021
Kohls, 2014, Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis, Curr. Opin. Chem. Biol., 19, 180, 10.1016/j.cbpa.2014.02.021
Ward, 2010, High-yield biocatalytic amination reactions in organic synthesis, Curr. Org. Chem., 14, 1914, 10.2174/138527210792927546
Mathew, 2012, ω-Transaminases for the production of optically pure amines and unnatural amino acids, ACS Catal., 2, 993, 10.1021/cs300116n
Tufvesson, 2011, Process considerations for the asymmetric synthesis of chiral amines using transaminases, Biotechnol. Bioeng., 108, 1479, 10.1002/bit.23154
Finn, 2010, The Pfam protein families database, Nucleic Acids Res., 38, D211, 10.1093/nar/gkp985
Conwaya, 2003, Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines, Biochim. Biophys. Acta, 1647, 61, 10.1016/S1570-9639(03)00051-7
Yvon, 2000, Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763, Appl. Environ. Microbiol., 66, 571, 10.1128/AEM.66.2.571-577.2000
Berger, 2003, Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis, J. Bacteriol., 185, 2418
Hohne, 2010, Rational assignment of key motifs for function guides in silico enzyme identification, Nat. Chem. Biol., 6, 807, 10.1038/nchembio.447
Jiang, 2015, Characterization of (R)-selective amine transaminases identified by silico motif sequence blast, Appl. Microbial. Biot., 99, 2613, 10.1007/s00253-014-6056-1
Sayer, 2014, The substrate specificity, enantioselectivity and structure of the (R)-selective amine: pyruvate transaminase from Nectria haematococca, FEBS J., 281, 2240, 10.1111/febs.12778
Iwasaki, 2012, A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning, Appl. Microbiol. Biotechnol., 93, 1563, 10.1007/s00253-011-3580-0
Kumar, 2011, Extremophiles: a novel source of industrially important enzymes, Biotechnology, 10, 121, 10.3923/biotech.2011.121.135
Xing, 1992, Characterization of amino acid aminotransferases of Methanococcus aeolicus, J. Bacteriol., 174, 541, 10.1128/jb.174.2.541-548.1992
Uchida, 2014, Cloning and characterization of a novel fold-type I branched chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1, Extremophiles, 18, 589, 10.1007/s00792-014-0642-0
Boyko, 2016, First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for l-amino acids and R-amines, Extremophiles, 20, 215, 10.1007/s00792-016-0816-z
Gumerov, 2011, Complete genome sequence of Vulcanisaeta moutnovskia strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta, J. Bacteriol., 193, 2355, 10.1128/JB.00237-11
Bradford, 1976, A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Kengen, 1994, Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus, Arch. Microbiol, 161, 168, 10.1007/BF00276479
Thermo scientific Instructions. General Protocol for Derivatizing Primary Amines. https://tools.thermofisher.com/content/sfs/manuals/MAN0011429_FDAA_Marfeys_Reag_UG.pdf. (accessed 24.08.16).
Altschul, 1997, Gapped, BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Sievers, 2011, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, 10.1038/msb.2011.75
Hutson, 2001, Structure and function of branched chain aminotransferases, 175, 10.1016/S0079-6603(01)70017-7
Cellini, 2007, Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications, Biochem. J., 408, 39, 10.1042/BJ20070637
McAllister, 2013, Analysis of the enzymatic properties of a broad family of alanine aminotransferases, PLoS One, 8, e55032, 10.1371/journal.pone.0055032
Goto, 2003, Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme, Biochemistry, 42, 3725, 10.1021/bi026722f
Chen, 2012, Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with α-ketoisocaproate and l-glutamate suggest the radiation resistance of this enzyme for catalysis, J. Bacteriol., 194, 6206, 10.1128/JB.01659-12
Castell, 2010, Structural analysis of mycobacterial branched-chain aminotransferase: implications for inhibitor design, Acta Cryst. D, 66, 549, 10.1107/S0907444910004877
Hirotsu, 2005, Dual substrate recognition of aminotransferases, Chem. Rec., 5, 160, 10.1002/tcr.20042
Bezsudnova, 2016, Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis, Arch. Biochem. Biophys., 607, 27-36, 10.1016/j.abb.2016.08.009
Daniel, 2007, Enzyme stability and activity at high temperatures, 1