A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia

Enzyme and Microbial Technology - Tập 96 - Trang 127-134 - 2017
Tatiana N. Stekhanova1, Andrey L. Rakitin2, Andrey V. Mardanov2, Ekaterina Yu. Bezsudnova1, Vladimir O. Popov1,3
1A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation
2Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
3NBICS Center, National Research Centre “Kurchatov Institute”, Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation

Tài liệu tham khảo

Hutson, 2001, Structure and function of branched-chain aminotransferases, Prog. Nucl. Acid Res. Mol. Biol., 70, 175, 10.1016/S0079-6603(01)70017-7 Eliot, 2004, Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations, Ann. Rev. Biochem., 73, 383, 10.1146/annurev.biochem.73.011303.074021 Kohls, 2014, Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis, Curr. Opin. Chem. Biol., 19, 180, 10.1016/j.cbpa.2014.02.021 Ward, 2010, High-yield biocatalytic amination reactions in organic synthesis, Curr. Org. Chem., 14, 1914, 10.2174/138527210792927546 Mathew, 2012, ω-Transaminases for the production of optically pure amines and unnatural amino acids, ACS Catal., 2, 993, 10.1021/cs300116n Tufvesson, 2011, Process considerations for the asymmetric synthesis of chiral amines using transaminases, Biotechnol. Bioeng., 108, 1479, 10.1002/bit.23154 Finn, 2010, The Pfam protein families database, Nucleic Acids Res., 38, D211, 10.1093/nar/gkp985 Conwaya, 2003, Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines, Biochim. Biophys. Acta, 1647, 61, 10.1016/S1570-9639(03)00051-7 Yvon, 2000, Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763, Appl. Environ. Microbiol., 66, 571, 10.1128/AEM.66.2.571-577.2000 Berger, 2003, Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis, J. Bacteriol., 185, 2418 Hohne, 2010, Rational assignment of key motifs for function guides in silico enzyme identification, Nat. Chem. Biol., 6, 807, 10.1038/nchembio.447 Jiang, 2015, Characterization of (R)-selective amine transaminases identified by silico motif sequence blast, Appl. Microbial. Biot., 99, 2613, 10.1007/s00253-014-6056-1 Sayer, 2014, The substrate specificity, enantioselectivity and structure of the (R)-selective amine: pyruvate transaminase from Nectria haematococca, FEBS J., 281, 2240, 10.1111/febs.12778 Iwasaki, 2012, A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning, Appl. Microbiol. Biotechnol., 93, 1563, 10.1007/s00253-011-3580-0 Kumar, 2011, Extremophiles: a novel source of industrially important enzymes, Biotechnology, 10, 121, 10.3923/biotech.2011.121.135 Xing, 1992, Characterization of amino acid aminotransferases of Methanococcus aeolicus, J. Bacteriol., 174, 541, 10.1128/jb.174.2.541-548.1992 Uchida, 2014, Cloning and characterization of a novel fold-type I branched chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1, Extremophiles, 18, 589, 10.1007/s00792-014-0642-0 Boyko, 2016, First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for l-amino acids and R-amines, Extremophiles, 20, 215, 10.1007/s00792-016-0816-z Gumerov, 2011, Complete genome sequence of Vulcanisaeta moutnovskia strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta, J. Bacteriol., 193, 2355, 10.1128/JB.00237-11 Bradford, 1976, A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Kengen, 1994, Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus, Arch. Microbiol, 161, 168, 10.1007/BF00276479 Thermo scientific Instructions. General Protocol for Derivatizing Primary Amines. https://tools.thermofisher.com/content/sfs/manuals/MAN0011429_FDAA_Marfeys_Reag_UG.pdf. (accessed 24.08.16). Altschul, 1997, Gapped, BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389 Sievers, 2011, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, 10.1038/msb.2011.75 Hutson, 2001, Structure and function of branched chain aminotransferases, 175, 10.1016/S0079-6603(01)70017-7 Cellini, 2007, Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications, Biochem. J., 408, 39, 10.1042/BJ20070637 McAllister, 2013, Analysis of the enzymatic properties of a broad family of alanine aminotransferases, PLoS One, 8, e55032, 10.1371/journal.pone.0055032 Goto, 2003, Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme, Biochemistry, 42, 3725, 10.1021/bi026722f Chen, 2012, Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with α-ketoisocaproate and l-glutamate suggest the radiation resistance of this enzyme for catalysis, J. Bacteriol., 194, 6206, 10.1128/JB.01659-12 Castell, 2010, Structural analysis of mycobacterial branched-chain aminotransferase: implications for inhibitor design, Acta Cryst. D, 66, 549, 10.1107/S0907444910004877 Hirotsu, 2005, Dual substrate recognition of aminotransferases, Chem. Rec., 5, 160, 10.1002/tcr.20042 Bezsudnova, 2016, Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis, Arch. Biochem. Biophys., 607, 27-36, 10.1016/j.abb.2016.08.009 Daniel, 2007, Enzyme stability and activity at high temperatures, 1