A Novel Model Order Reduction Technique for Linear Continuous-Time Systems Using PSO-DV Algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aguirre, L. A. (1992). The least-squares Padé method for model reduction. International Journal of Systems Science, 23(10), 1559–1570.
Antoulas, A. C., & Sorensen, D. C. (2001). Approximation of large-scale dynamical systems: An overview. International Journal of Applied Mathematics and Computer Science, 11(5), 1093–1121.
Bansal, J. C., Harish, S., & Arya, K. V. (2011) Model order reduction of single input single output systems using Artificial Bee Colony Optimization algorithm. NICSO-2011, SCI-387 (pp. 85–100).
Boby, P., & Pal, J. (2010). An evolutionary computation based approach for reduced order modelling of linear systems. IEEE International conference on computational intelligence and computing research, Coimbatore, India. doi: 10.1109/ICCIC.2010.5705729 .
Chen, T., Chang, C., & Han, K. (1979). Reduction of transfer functions by the stability-equation method. Journal of the Franklin Institute, 308(4), 389–404.
Choi, B. K., Chiang, H. D., Wu, H., Li, H., David, C. Y. (2008). Exciter model reduction and validation for large-scale power system dynamic security assessment. IEEE Conference: PES, Pittsburgh (pp. 1–7).
Choo, Y. (1999). Improvement to modified routh approximation method. IEE Electronics Letters, 35(7), 606–607.
Das, S., Ajith, A., & Amit, K. (2008). Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives. Studies in Computational Intelligence (SCI), 116, 1–38.
Deepa, S. N., & Sugumaran, G. (2011). MPSO based model order formulation technique for SISO continuous systems. World Academy of Science, Engineering and Technology: International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(3), 288–293.
Desai, S. R., & Prasad, R. (2013). A new approach to order reduction using stability equation and big bang big crunch optimization. Systems Science & Control Engineering, 1(1), 20–27.
Farsangi, M. M., NasiriSoloklo, H., & Hajmohammadi, R. (2015). Model order reduction based on moment matching using Legendre wavelet and harmony search algorithm. IJST, Transactions of Electrical Engineering, 39(E1), 39–54.
Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. NewYork: Wiley.
George, D. H., & Luss, R. (1990). Model reduction by minimization of integral square error performance indices. Journal of the Franklin Institute, 327(3), 343–357.
Hwang, C. (1984). Mixed method of routh and ise criterion approaches for reduced-order modeling of continuous-time systems. Journal of Dynamic Systems, Measurement, and Control, 106(4), 353–356.
Hwang, C., & Wang, K. Y. (1984). Optimal routh approximations for continuous-time systems. International Journal of Systems Science, 15(3), 249–259.
Jamshidi, M. (1997). Large scale systems: Modeling, control, and fuzzy logic. Upper Saddle River, NJ: Prentice-Hall. Inc.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference: Neural Networks, Perth(WA), 4, 1942–1948.
Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence. Burlington: Morgan Kaufmann Academic Press.
Krishnamurthy, V., & Seshadri, V. (1978). Model reduction using the routh stability criterion. IEEE Transactions on Automatic Control, 23(4), 729–731.
Kuo, B. C., & Farid, G. (2007). Automatic control systems (8th ed.). NewYork: Wiley.
Lepschy, A., Antoniomian, G., & Viaro, U. (1988). System approximation by matching the impulse response energies. Journal of the Franklin Institute, 325(1), 17–26.
Lucas, T. N. (1983). Factor division: A useful algorithm in model reduction. IEE Proceedings D: Control Theory and Applications, 130(6), 362–364.
Lucas, T. N. (1993). Optimal model reduction by multipoint pade approximation. Journal of the Franklin Institute, 330(1), 79–91.
Mukherjee, S., & Mishra, R. (1987). Order reduction of linear systems using an error minimization technique. Journal of the Franklin Institute, 323(1), 23–32.
Mukherjee, S., & Mittal, R. C. (2005). Model order reduction using response-matching technique. Journal of the Franklin Institute, 342(5), 503–519.
Munro, A. R., & Lucas, T. N. (1991). Model reduction by generalised least squares method. Electronics Letters, 27(15), 1383–1384.
NasiriSoloklo, H., & Maghfoori Farsangi, M. (2014). Order reduction by minimizing integral square error and $$H_\infty $$ H ∞ norm of error. Journal of Advances in Computer Research, 5(1), 29–42.
Pamar, G., Mukherjee, S., & Prasad, R. (2007). Relative mapping errors of linear time invariant systems caused by particle swarm optimized reduced order model. International Journal of Computer, Information, System Science and Engineering, 1(4), 83–89.
Santosh, K. V. S., Sandeep, G., & Vasu, G. (2012). Reduction of large scale linear dynamic SISO and MIMO systems using differential evolution optimization algorithm. IEEE students conference on electrical, electronics and computer science (pp. 180–185). Bhopal. doi: 10.1109/SCEECS.2012.6184732 .
Schilders, W. H., VanderVorst, H. A. & Rommes, J. (Eds.) (2008). Model order reduction: Theory, research aspects and applications, Hardcover (pp. 3–32). http://www.springer.com/ISBN:978-3-540-78840-9 .
Sikander, A., & Prasad, R. (2015). Soft computing approach for model order reduction of linear time invariant systems. Circuits, Systems, and Signal Processing, 34(11), 3471–3487.
Vasu, G., Sivakumar, M., & Ramalingaraju, M. (2016a). A novel method for optimal model simplification of large scale linear discrete-time systems. International Journal of Automation and Control, 10(2), 120–141.
Vasu, G., Sivakumar, M., & Ramalingaraju, M. (2016b). Optimal least squares model approximation for large-scale linear discrete-time systems. Transactions of the Institute of Measurement and Control,. doi: 10.1177/0142331216649023 .
Vishwakarma, C. B., & Prasad, R. (2009). MIMO system reduction using modified pole clustering and genetic algorithm. Modelling and Simulation in Engineering, 2009, 1–5. doi: 10.1155/2009/540895 .
Vishwakarma, C. B., & Prasad, R. (2014). Time domain model order reduction using Hankel matrix approach. Journal of the Franklin Institute, 351(2014), 3445–3456.