A Novel Cooperative Micro-Caching Algorithm Based on Fuzzy Inference Through NFV in Ultra-Dense IoT Networks
Tóm tắt
Minimizing transaction latency and network traffic is pivotal in large-scale Internet of Things (IoT) applications. This paper investigates the fundamentals of distributed caching, cache coordination, network function virtualization, fog computing, and software-defined networking to avoid service loss and enhance quality of experience (QoE) in IoT applications. We visualize caching as a virtual network function (VNF) and use fog nodes to persistently host a large number of micro-caches as VNFs in the vicinity of their interest locations. We formulate the cache placement and migration process as a multi integer linear programming (MILP) problem. Firstly, we propose a cache consensus function to decide whether a content needs caching or not. Secondly, we propose a fuzzy inference based algorithm to solve the MILP problem for dynamic placement and migration of micro-caches at appropriate locations in geographically co-located 5G radio access networks. Another significant contribution of the proposed scheme is the inter-RAN cooperation among micro-caches to augment service quality by mitigating network traffic. Simulation results show the superiority of the proposed scheme over existing approaches.
Tài liệu tham khảo
Sai, Y., Fan, D.-Z., Fan, M.-Y.: Cooperative and efficient content caching and distribution mechanism in 5G network. Comput. Commun.s 161, 183–190 (2020)
Abkenar, F. S., Khan, K. S., Jamalipour, A.: Smart cluster-based distributed caching for fog-IoT networks. IEEE Internet Things J. 8(5), 3875–3884.
Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Stefanovic, C., Popovski, P., Dekorsy, A.: Massive machine-type communications in 5G: physical and MAC-layer solutions. IEEE Commun. Mag. 54(9), 59–65 (2016)
Sharma, S.K., Wang, X.: Distributed caching enabled peak traffic reduction in ultra-dense IoT networks. IEEE Commun. Lett. 22(6), 1252–1255 (2018)
Ren, Y., Zhang, X., Wu, T., Tan, Y.: In-network caching for the green Internet of Things. IEEE Access 9, 76413–76422 (2021)
Eramo, V., Miucci, E., Ammar, M., Lavacca, F.G.: An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures. IEEE/ACM Trans. Netw. 25(4), 2008–2025 (2017)
Medhat, A.M., Taleb, T., Elmangoush, A., Carella, G.A., Covaci, S., Magedanz, T.: Service function chaining in next generation networks: state of the art and research challenges. IEEE Commun. Mag. 55(2), 216–223 (2016)
Taleb, T., Ksentini, A., Chen, M., Jantti, R.: Coping with emerging mobile social media applications through dynamic service function chaining. IEEE Trans. Wirel. Commun. 15(4), 2859–2871 (2015)
Cui, Y., Song, J., Li, M., Ren, Q., Zhang, Y., Cai, X.: SDN-based big data caching in ISP networks. IEEE Trans. Big Data 4(3), 356–367 (2017)
Fulber-Garcia, V., Huff, A., Marcuzzo, L.C., Luizelli, M.C., Schaeffer-Filho, A.E., Granville, L.Z., dos Santos, C.R., Junior, E.P.D.: Customizable deployment of nfv services. J. Netw. Syst. Manag. 29(3), 1–27 (2021)
Virtualisation, N.F.: Architectural framework (RGS/NFV-002) (2014)
Benkacem, I., Taleb, T., Bagaa, M., Flinck, H.: Optimal VNFs placement in CDN slicing over multi-cloud environment. IEEE J. Sel. Areas Commun. 36(3), 616–627 (2018)
De Domenico, A., Liu, Y.-F., Yu, W.: Optimal virtual network function deployment for 5G network slicing in a hybrid cloud infrastructure. IEEE Trans. Wirel. Commun. 19(12), 7942–7956 (2020)
Nejad, M.A.T., Parsaeefard, S., Maddah-Ali, M.A., Mahmoodi, T., Khalaj, B.H.: vSPACE: VNF simultaneous placement, admission control and embedding. IEEE J. Sel. Areas Commun. 36(3), 542–557 (2018)
Pham, C., Nguyen, D.T., Tran, N.H., Nguyen, K.K., Cheriet, M.: Optimized IoT service chain implementation in edge cloud platform: a deep learning framework. IEEE Trans. Netw. Serv. Manag. 18(1), 538–551.
Hawilo, H., Jammal, M., Shami, A.: Orchestrating network function virtualization platform: migration or re-instantiation? In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet). IEEE, pp. 1–6 (2017)
DeAlmeida, J.M., DaSilva, L., Both, C.B.B., Ralha, C.G., Marotta, M.A.: Artificial intelligence-driven fog radio access networks: Integrating decision making considering different. IEEE Veh. Techn. Mag. https://doi.org/10.1109/mvt.2021.3078417
Cohen,R., Lewin-Eytan,L., Naor,J. S., Raz,D.: Near optimal placement of virtual network functions, in: 2015 IEEE Conference on Computer Communications (INFOCOM), IEEE, (2015), pp. 1346–1354
Dutta, S., Taleb, T., Ksentini, A.: QoE-aware elasticity support in cloud-native 5G systems. In: 2016 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 (2016)
Cerrato, I., Annarumma, M., Risso, F.: Supporting fine-grained network functions through intel DPDK. In: Third European Workshop on Software Defined Networks (IEEE 2014), pp. 1–6 (2014)
Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici, F.: ClickOS and the art of network function virtualization. In: 11th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 14), pp. 459–473 (2014)
Taleb, T., Ksentini, A., Jantti, R.: “Anything as a service” for 5G mobile systems. IEEE Netw. 30(6), 84–91 (2016)
Leivadeas, A., Kesidis, G., Ibnkahla, M., Lambadaris, I.: VNF placement optimization at the edge and cloud. Futur. Internet 11(3), 69 (2019)
Atoui, W.S., Assy, N., Gaaloul, W., Grida Ben Yahia, I.: Configurable deployment descriptor model in NFV. J. Netw. Syst. Manag. 28(3), 693–718 (2020)
Mahboob, T., Jung, Y.R., Chung, M.Y.: Dynamic VNF placement to manage user traffic flow in software-defined wireless networks. J. Netw. Syst. Manag. 1–21 (2020)
Friderikos, V., Zheng, G., Tsiopoulos, A.: Optimal VNF chains management for proactive caching, IEEE Trans. Commun. 17(10), 6735–6748 (2018)
Somesula, M.K., Rout, R.R., Somayajulu, D.V.: Deadline-aware caching using echo state network integrated fuzzy logic for mobile edge networks. Wirel. Netw. 27(4), 2409–2429 (2021)
Kim, D., Kim, Y.: Enhancing NDN feasibility via dedicated routing and caching. Comput. Netw. 126, 218–228 (2017)
Yao, J., Ansari, N.: Caching in dynamic IoT networks by deep reinforcement learning. IEEE Internet Things J. 8(5), 3268–3275 (2021)
Ruggeri, G., Amadeo, M., Campolo, C., Molinaro, A., Iera, A.: Caching popular transient IoT contents in an SDN-based edge infrastructure. IEEE Trans. Netw. Serv. Manag. 18(3), 3432–3447 (2021)
Ben-Ammar, H., Hadjadj-Aoul, Y.: A grasp-based approach for dynamic cache resources placement in future networks. J. Netw. Syst. Manag. 28(3), 457–477 (2020)
Wang, L., Wu, H., Han, Z., Zhang, P., Poor, H.V.: Multi-hop cooperative caching in social IoT using matching theory. IEEE Trans. Wirel. Commun. 17(4), 2127–2145 (2017)
Rastegar, S.H., Abbasfar, A., Shah-Mansouri, V.: Rule caching in SDN-enabled base stations supporting massive IoT devices with bursty traffic. IEEE Internet Things J. 7(9), 8917–8931 (2020)
Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K.M.S., Li, G.: Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Trans. Ind. Inf. 14(6), 2715–2724 (2018)
Ghalehtaki, R.A., Kianpisheh, S., Glitho, R., A bee colony-based algorithm for micro-cache placement close to end users in fog-based content delivery networks. In: 16th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE 2019, pp. 1–4 (2019)
Parihar, S.S., Malik, N.: Multi-objective optimization with non-convex cost functions using fuzzy mechanism based continuous genetic algorithm. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). IEEE, pp. 457–462 (2017)
Balasubbareddy, M., Sivanagaraju, S., Suresh, C.V.: Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm. Int. J. Eng. Sci. Technol. 18(4), 603–615 (2015)
Khan, M.W., Zeeshan, M.: QoS-based dynamic channel selection algorithm for cognitive radio based smart grid communication network. Ad Hoc Netw. 87, 61–75 (2019)
Giupponi, L., Agusti, R., Perez-Romero, J., Roig, O.S.: A novel approach for joint radio resource management based on fuzzy neural methodology. IEEE Trans. Veh. Technol. 57(3), 1789–1805 (2008)
Zhao, J., Bose, B.K.: Evaluation of membership functions for fuzzy logic controlled induction motor drive. In: IEEE 2002 28th Annual Conference of the Industrial Electronics Society (IECON 02), vol. 1. IEEE, pp. 229–234 (2002)
Khan, M.W., Zeeshan, M.: Fuzzy inference based adaptive channel allocation for IEEE 802.22 compliant smart grid network. Telecommun. Syst. 72(3), 339–353 (2019)