A Note on the Inefficiency of Technology- and Region-Specific Renewable Energy Support: The German Case
Tóm tắt
Renewable energy (RES-E) support schemes have to meet two requirements in order to lead to a cost-efficient renewable energy mix. First, RES-E support schemes need to expose RES-E producers to the price signal of the wholesale market, which incentivizes investors to account not only for the marginal costs per kWh (
$\overline{MC}$
) but also for the marginal value per kWh (
$\overline{MV^{el}}$
) of renewable energy technologies. Second, RES-E support schemes need to be technology- and region-neutral in their design (rather than technology- and region-specific). That is, the financial support may not be bound to a specific technology or a specific region. In Germany, however, wind and solar power generation is currently incentivized via technology- and region-specific feed-in tariffs (FIT), which are coupled with capacity support limits. As such, the current RES-E support scheme in Germany fails to expose wind and solar power producers to the price signal of the wholesale market. Moreover, it is technology- and region-specific in its design, i.e., the support level for each kWh differs between wind and solar power technologies and the location of their deployment (at least for onshore wind power). As a consequence, excess costs occur which are burdened by society. This paper illustrates the economic consequences associated with Germany’s technology- and region-specific renewable energy support by applying a linear electricity system optimization model. Overall, excess costs are found to amount to more than 6.6 Bn Euro
$_{2010}$
. These are driven by comparatively high net marginal costs of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.
Tài liệu tham khảo
Agora Energiewende (2013) Studie zum kostenoptimalen Ausbau der Erneuerbaren Energien. Hintergrunddokument zu Kostenannahmen der Erneuerbaren. Tech. rep
BMU (2014) Eckpunkte für die Reform des EEG. Tech. rep., Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
CDU/CSU/SPD (2013) Deutschlands Zukunft gestalten. Koalitionsvertrag zwischen CDU, CSU und SPD. 18. Legislaturperiode. Tech. rep. https://www.cdu.de/sites/default/files/media/dokumente/koalitionsvertrag.pdf
Deutsche Bank (2012) The German feed-in tariff: Recent policy changes. Tech. rep., Deutsche Bank. https://www.db.com/cr/en/docs/German_FIT_Update_2012.pdf
ENSTO-E, 2013. Hourly load values for all countries for a specific month. https://www.entsoe.eu/data/data-portal/consumption/
ENTSO-E (2012). 10-Year Network Development Plan
ENTSO-E (February 2014) Monthly consumption of all countries for a specific year (2012). https://www.entsoe.eu/db-query/consumption/monthly-consumption-of-all-countries-for-a-specific-year/
EU Council (October 2009) Brussels European Council 29/30 OCTOBER 2009 - Presidency Conclusions. Council of the European Union
EuroWind (2011) Database for hourly wind speeds and solar radiation from 2006–2010 (not public)
EWI (2010) European RES-E policy analysis - a model based analysis of RES-E deployment and its impact on the conventional power markt. M. Fürsch and C. Golling and M. Nicolosi and R. Wissen and D. Lindenberger (Institute of Energy Economics at the University of Cologne)
EWI (2011) Roadmap 2050 - a closer look. Cost-efficient RES-E penetration and the role of grid extensions. M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl and D. Lindenberger. Institute of Energy Economics at the University of Cologne
Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die ENBW Energie Baden-Würtemberg AG. Tech. rep., Frontier Economics
Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger D, Tröster E (2013) The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl Energy 104:642–652
IEA (2010a) Technology roadmap - concentrating solar power. International Energy Agency. www.iea.org/papers/2010/
IEA (2010b) World Energy Outlook 2010. International Energy Agency
IEA (2011) World Energy Outlook 2011. International Energy Agency
ISE (2013) Stromgestehungskosten für Erneuerbare Energien. Tech. rep., Fraunhofer-Institut für solare Energiesysteme
ISE (2014) Stromerzeugung aus Solar- und Windenergie im Jahr 2013. Tech. rep., Fraunhofer-Institut für solare Energiesysteme ISE
Jägemann C (2014) An illustrative note on the system price effect of wind and solar power - The German case. Institute of Energy Economics at the University of Cologne Working Paper No 14/10
Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013a) Decarbonizing Europe’s power sector by 2050 - analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636
Jägemann C, Hagspiel S, Lindenberger D (2013b) The economic inefficiency of grid parity: the case of German photovoltaic. Institute of Energy Economics at the University of Cologne Working Paper No 13/19
Joskow PL (2011) Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer Econ Rev 100(3):238–241
Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity market risks - a comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 36:3646–3661
Lamont AD (2008) Assessing the long-term system value of intermittent electric generation technologies. Energy Econ 30:1208–1231
Mitchell C, Bauknecht D, Connor PM (2006) Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 34:297–305
Nagl S, Fürsch M, Jägemann C, Bettzüge M (2011) The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants. Institute of Energy Economics at the University of Cologne Working Paper No 11/08
Nagl S, Fürsch M, Lindenberger D (2013) The costs of electricity systems with a high share of fluctuating renewables - a stochastic investment and dispatch optimization model for Europe. The Energy Journal 34:151–179
PROGNOS/EWI/GWS (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Schlesinger and P.Hofer and A. Kemmler and A. Kirchner and S. Strassburg (all Prognos AG); D. Lindenberger and M. Fürsch and S. Nagl and M. Paulus and J. Richter and J. Trüby (all Institute of Energy Economics at the University of Cologne); C. Lutz and O. Khorushun and U. Lehr and I. Thobe (all GWS mbH)
Richter J (2011) DIMENSION - A Dispatch and Investment Model for European Electricity Markets (Working Paper No. 11/03) Institute of Energy Economics at the University of Cologne. http://www.ewi.uni-koeln.de/publikationen/working-paper/
Statista (January 2014). Anteil erneuerbarer Energien an der Bruttostromerzeugung in Deutschland in den Jahren 1990 bis 2013. http://de.statista.com/statistik/daten/studie/1807/umfrage/erneuerbare-energien-anteil-der-energiebereitstellung-seit-1991/
The Crown Estate (June 2012) Offshore wind cost reduction pathways study
