A Note on Heterochromatic C 4 in Edge-Colored Triangle-Free Graphs

Springer Science and Business Media LLC - Tập 28 Số 6 - Trang 901-905 - 2012
Guanghui Wang1, Hao Li2, Yan Zhu3, Guizhen Liu1
1School of Mathematics, Shandong University, Jinan, 250100, Shandong, China
2Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-Sud, 91405, Orsay cedex, France
3Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albert, M., Frieze, A., Reed, B.: Multicolored Hamilton cycles. Electron. J. Comb. 2, R10 (1995) (research paper)

Bondy J.A., Murty U.S.R.: Graph Theory with Applications. Macmillan Press[M], New York (1976)

Broersma H.J., Li X., Woeginger G., Zhang S.: Paths and cycles in colored graphs. Aust. J. Comb. 31, 297–309 (2005)

Brualdi R.A., Shen J.: Disjoint cycles in Eulerian digraphs and the diameter of interchange graphs. J. Comb. Theory Ser. B 85(2), 189–196 (2002)

Chen, H., Li, X.: Long heterochromatic paths in edge-colored graphs. Electron. J. Comb. 12(1), R33 (2005) (research paper)

Jørgensen L.K.: Girth 5 graphs from relative difference sets. Discret. Math. 293, 177–184 (2005)

Kano M., Li X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs—a survey. Graph Comb. 24(4), 237–263 (2008)

Li H., Li X., Liu G., Wang G.: The heterochromatic matchings in edge-colored bipartite graph. Ars comb. 93, 129–139 (2009)

Li, H., Wang, G: Color degree and heterochromatic cycles in edge colored graphs. Eur. J. Comb. (to appear)

Li H., Wang G.: Color degree and heterochromatic matchings in edge-colored bipartite graphs. Utilitas Math. 77, 145–154 (2008)

Suzuki K.: A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph. Graph Comb. 22, 261–269 (2006)

Wang, G., Li, H.: Heterochromatic matchings in edge-colored graphs. Electron. J. Comb. 15, #R138 (2008) (research paper)