A Nonlocal Laplacian-Based Model for Bituminous Surfacing Crack Recovery and its MPI Implementation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adam, R. D., Peter, P., Weickert, J.: Denoising by inpainting. In Lauze, F., Dong, Y., Dahl, A. B. (eds) Scale Space and Variational Methods in Computer Vision: 6th International Conference, SSVM 2017, Kolding, Denmark, June 4–8, 2017, Proceedings, pp. 121–132. Springer International Publishing (2017)
Ambrosio, L., Faina, L., March, R.: Variational approximation of a second order free discontinuity problem in computer vision. SIAM J. Math. Anal. 32(6), 1171–1197 (2001)
Aronsson, G., Crandall, M., Juutinen, P.: A tour of the theory of absolutely minimizing functions. B. Am. Math. Soc. 41, 439–505 (2004)
Aubert, G., Aujol, J.-F., Blanc-Féraud, L.: Detecting codimension-two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vision 65(1), 29–42 (2005)
Aubert, G., Kornprobst, P.: Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47(2), 844–860 (2009)
Aubert, G., Drogoul, A.: Topological gradient for a fourth order operator used in image analysis. ESAIM COCV 21(4), 1120–1149 (2015)
Baudour, A., Aubert, G., Blanc-Féraud, L.: Detection and completion of filaments: a vector field and PDE approach. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 451–460. Springer, Heidelberg (2007)
Bergounioux, M., Vicente, D.: Parameter selection in a mumford-shah geometrical model for the detection of thin structures. Acta Appl. Math. 141(1), 17–48 (2016)
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1989)
Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J. L., Rofman, E., Sulem, A. (eds) Optimal Control and Partial Differential Equations, in honour of Professor Alain Bensoussan’s 60th Birthday, pp. 439–455 (2001)
Brezis, H.: Analyse Fonctionnelle. Dunod Paris, Kuala Lumpur (2005)
Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)
Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE T. Image Process. 7(3), 376–386 (1998)
Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bullet Am Mathe Soc 27(1), 1–67 (1992)
Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15(4), 519–527 (2002)
Debroux, N., Le Guyader, C., Vese, L.A.: A second order free discontinuity model for bituminous surfacing crack recovery and analysis of a nonlocal version of it. Ann. Math. Sci. Appl. 3(1), 49–88 (2018)
Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, London (2012)
Drogoul, A.: Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging. SIAM J. Imag. Sci. 7(4), 2700–2731 (2014)
Drogoul, A.: Méthode du gradient topologique pour la détection de contours et de structures fines en imagerie. PhD thesis, Université de Nice-Sophia Antipolis, France, (2014)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
Forcadel, N.: Dislocation dynamics with a mean curvature term: short time existence and uniqueness. Differ. Integral Equ. 21(3–4), 285–304 (2008)
Frangi A.F., Niessen W.J., Vincken K.L., Viergever M.A.: Multiscale vessel enhancement filtering. In: Wells W.M., Colchester A., Delp S. (eds) Medical Image Computing and Computer-Assisted Intervention –MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol. 1496. Springer, Berlin, Heidelberg (1998)
Gao, Y., Bredies, K.: Infimal convolution of oscillation total generalized variation for the recovery of images with structured texture. SIAM J. Imag. Sci. 11(3), 2021–2063 (2018)
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)
Hait, E., Gilboa, G.: Spectral total-variation local scale signatures for image manipulation and fusion. IEEE T. Image Process. 28(2), 880–895 (2019)
Jung, M., Bresson, X., Chan, T., Vese, L.: Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Trans. Image Process. 20(6), 1583–1598 (2011)
Kim, Y., Vese, L.: Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems Imag. 3(1), 43–68 (2009)
Lellman, J., Papafitsoros, K., Schönlieb, C., Spector, D.: Analysis and application of a non-local Hessian. SIAM J. Imaging Sci. 8(4), 2161–2202 (2015)
Lieu, L., Vese, L.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58(2), 167–193 (2008)
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Am. Math. Soc. 22, (2002)
Ono, S., Miyata, T., Yamada, I.: Cartoon-texture image decomposition using blockwise low-rank texture characterization. IEEE T. Image Process. 23(3), 1128–1142 (2014)
Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the $$H^{-1}$$ norm. Multiscale Model. Simul. 1(3), 349–370 (2003)
Ponce, A.C.: A new approach to Sobolev spaces and connections to $$\varGamma $$-convergence. Calc. Var. Partial Differ. Equ. 19(3), 229–255 (2004)
Rochery, M., Jermyn, I.H., Zerubia, J.: Higher order active contours. Int. J. Comput. Vis. 69(1), 27–42 (2006)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–298 (1992)
Schaeffer, H., Osher, S.: A low patch-rank interpretation of texture. SIAM J. Imaging Sci. 6(1), 226–262 (2013)
Schaeffer, H., Garnett, J., Vese, L.A.: A texture model based on a concentration of measure. Inverse Problems Imag. 7(3), 927–946 (2013)
Spector, D., Characterization of Sobolev and $$BV$$ Spaces. PhD thesis, Carnegie Mellon University (2011)
Stoica, R., Descombes, X., Zerubia, J.: A Gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vis. 57(2), 121–136 (2004)
Strong, D.M., Aujol, J.-F., Chan, T.F.: Scale recognition, regularization parameter selection, and meyer’s $$G$$ norm in total variation regularization. Multiscale Model. Simul. 5(1), 273–303 (2006)
Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)
Zana, F., Klein, J.-C.: Segmentation of vesell-like patterns using mathematical morphology and curvature evaluation. IEEE T. Image Process. 10(7), 1010–1019 (2001)