Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một Phương Pháp Mới Để Xây Dựng T tensor Độ Cong Riemann Bằng Cách Sử Dụng Đại Số Hình Học Và Cấu Trúc Đại Số Phân Chia
Tóm tắt
Tensor độ cong Riemann được xây dựng bằng cách sử dụng đại số hình học Clifford-Dirac và cấu trúc toán tử đại số phân chia.
Từ khóa
Tài liệu tham khảo
Ablamowicz, R., Sobczyk, G.: Lectures on Clifford, Geometric Algebras and Applications. Birkhauser, New York (2004)
Baez, J., Muniain, J.P.: Gauge Fields. Knots and Gravity. World Scientific Publishing, Hackensack (2013)
Bailin, D., Love, A.: Introduction to Gauge Field Theory, rev Taylor & Francis Group, Philadelphia (1993)
Belishev, M.I., Vakulenko, A.F.: On algebras of harmonic quaternion fields in \({\mathbb{R}}^{3}\). arXiv:1710.00577v3 [math.FA] (2007)
Conway, J.H., Smith, D.A.: On Quaternions and Octonions. CRC Press, Boca Raton (2003)
Dixon, G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer Academic Publishers, Norwell (1994)
Fecko, M.: Differential Geometry and Lie groups for Physicists. Cambridge University Press, New York (2011)
Graff, B.: Quaternions and dynamics. arXiv:0811.2889v1 [math.DS] (2008)
Griffiths, D.: Introduction to Elementary Particles, 2nd rev Wiley-VCH, Weinheim (2008)
Hasiewicz, Z., Kwaśniewski, A.K., Morawiec, P.: On parallelizable spheres, division algebras and Clifford algebras. Rep. Math. Phys. 23, 2 (1986)
Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen, 309–316 (1898)
Krishnaswami, G.S., Sonakshi, S.: Algebra and geometry of Hamilton’s quaternions. Resonance 21, 529–544 (2016)
Maia, M.D.: Geometry of the Fundamental Interactions. Springer, New York (2011)
Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press, Princeton, New Jersey (2017)
Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd. (2003)
Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (2005)
Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage Books, New York (2004)
Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd edn. Princeton University Press, Princeton (2013)
Ramond, P.: Group Theory: A Physicist’s Survey. Cambridge University Press, Cambridge (2010)
Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (2006)
Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)
Woit, P.: Quantum Theory. Groups and Representations. Springer, Switzerland (2017)
Wolk, B.: An alternative derivation of the Dirac operator generating intrinsic Lagrangian local gauge invariance. Pap. Phys. 9, 090002 (2017)
Wolk, B.: An alternative formalism for generating pre-Higgs \(SU(2)_{L}\otimes U(1)_{_{Y}}\) electroweak unification that intrinsically accommodates \(SU(2)\) left-chiral asymmetry. Phys. Scr. 94, 025301 (2019)
Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(2)\otimes U(1)\). Int. J. Mod. Phys. A 35, 2050037 (2020)
Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(3)\). Adv. Appl. Clifford Algebra 31, 26 (2021)
Wolk, B.: Building the Standard Model particles and fields within a sphere fiber bundle framework. Phys. Open 15, 100153 (2023)
Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)
