Một Phương Pháp Mới Để Xây Dựng T tensor Độ Cong Riemann Bằng Cách Sử Dụng Đại Số Hình Học Và Cấu Trúc Đại Số Phân Chia

Advances in Applied Clifford Algebras - Tập 33 - Trang 1-10 - 2023
Brian Jonathan Wolk1
1Independent, Tallahassee, USA

Tóm tắt

Tensor độ cong Riemann được xây dựng bằng cách sử dụng đại số hình học Clifford-Dirac và cấu trúc toán tử đại số phân chia.

Từ khóa


Tài liệu tham khảo

Ablamowicz, R., Sobczyk, G.: Lectures on Clifford, Geometric Algebras and Applications. Birkhauser, New York (2004) Baez, J., Muniain, J.P.: Gauge Fields. Knots and Gravity. World Scientific Publishing, Hackensack (2013) Bailin, D., Love, A.: Introduction to Gauge Field Theory, rev Taylor & Francis Group, Philadelphia (1993) Belishev, M.I., Vakulenko, A.F.: On algebras of harmonic quaternion fields in \({\mathbb{R}}^{3}\). arXiv:1710.00577v3 [math.FA] (2007) Conway, J.H., Smith, D.A.: On Quaternions and Octonions. CRC Press, Boca Raton (2003) Dixon, G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer Academic Publishers, Norwell (1994) Fecko, M.: Differential Geometry and Lie groups for Physicists. Cambridge University Press, New York (2011) Graff, B.: Quaternions and dynamics. arXiv:0811.2889v1 [math.DS] (2008) Griffiths, D.: Introduction to Elementary Particles, 2nd rev Wiley-VCH, Weinheim (2008) Hasiewicz, Z., Kwaśniewski, A.K., Morawiec, P.: On parallelizable spheres, division algebras and Clifford algebras. Rep. Math. Phys. 23, 2 (1986) Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen, 309–316 (1898) Krishnaswami, G.S., Sonakshi, S.: Algebra and geometry of Hamilton’s quaternions. Resonance 21, 529–544 (2016) Maia, M.D.: Geometry of the Fundamental Interactions. Springer, New York (2011) Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press, Princeton, New Jersey (2017) Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd. (2003) Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (2005) Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage Books, New York (2004) Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd edn. Princeton University Press, Princeton (2013) Ramond, P.: Group Theory: A Physicist’s Survey. Cambridge University Press, Cambridge (2010) Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (2006) Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972) Woit, P.: Quantum Theory. Groups and Representations. Springer, Switzerland (2017) Wolk, B.: An alternative derivation of the Dirac operator generating intrinsic Lagrangian local gauge invariance. Pap. Phys. 9, 090002 (2017) Wolk, B.: An alternative formalism for generating pre-Higgs \(SU(2)_{L}\otimes U(1)_{_{Y}}\) electroweak unification that intrinsically accommodates \(SU(2)\) left-chiral asymmetry. Phys. Scr. 94, 025301 (2019) Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(2)\otimes U(1)\). Int. J. Mod. Phys. A 35, 2050037 (2020) Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(3)\). Adv. Appl. Clifford Algebra 31, 26 (2021) Wolk, B.: Building the Standard Model particles and fields within a sphere fiber bundle framework. Phys. Open 15, 100153 (2023) Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)