Một cảm biến huỳnh quang nhạy cảm mới và chất xúc tác quang xúc tác để xác định và phân hủy natri valproate sử dụng nanocomposite g-C3N4@Fe3O4@CuWO4 và tối ưu hóa FCCD

Journal of Fluorescence - Tập 33 - Trang 1777-1801 - 2023
J. Zolgharnein1, F. Goudarzy1, J. B. Ghasemi2
1Department of Chemistry, Faculty of Sciences, Arak University, Arak, Iran
2School of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Tóm tắt

Trong nghiên cứu này, nanocomposite carbon nitride kết hợp với Fe3O4 và CuWO4 đã được tổng hợp nhiệt và được đặc trưng bằng các kỹ thuật khác nhau, bao gồm SEM, TEM, XRD, EDX và FTIR. Do hiện tượng làm suy giảm phát quang của natri valproate trên nanocomposite này, một phương pháp xét nghiệm natri valproate đáng tin cậy, chính xác, nhạy cảm, chọn lọc và nhanh chóng đã được đề xuất. Việc tối ưu hóa cảm biến huỳnh quang này đã được thực hiện thông qua phương pháp FCCD. Trong các điều kiện tối ưu, đồ thị nồng độ natri valproate so với độ phát quang của nanocomposite cho thấy một phản ứng tuyến tính (R2 = 0.9918), với khoảng từ 0 đến 0.55 µM, giới hạn phát hiện (S/N = 3) bằng 0.85 nM và giới hạn định tính bằng 2.82 nM. Hoạt động quang xúc tác của nanocomposite g-C3N4@Fe3O4@CuWO4 (40%) cho thấy khả năng phân hủy natri valproate tốt. Các loài hoạt động trong quá trình phân hủy bao gồm gốc superoxide, lỗ trống và gốc hydroxyl đã được khảo sát bằng ammonium oxalate, benzoquinone và 2-propanol để xác định cơ chế phản ứng phân hủy quang. Hoạt động của benzoquinone trong quá trình quang xúc tác đã dẫn đến việc giảm tốc độ phân hủy của chất phân tích, cho thấy vai trò nổi bật của gốc superoxide so với các loài khác trong quá trình phân hủy. Tốc độ phân hủy của chất phân tích khi sử dụng thuốc thử Fenton được phát hiện là cao gấp khoảng hai lần so với quá trình không có thuốc thử Fenton. Cơ chế có thể cho cảm biến huỳnh quang và phản ứng phân hủy quang xúc tác cũng đã được thảo luận.

Từ khóa

#cảm biến huỳnh quang #chất xúc tác quang #natri valproate #nanocomposite g-C3N4@Fe3O4@CuWO4 #tối ưu hóa FCCD

Tài liệu tham khảo

Domingo-Echaburu S, de Torre-Querejazu AL, Valcárcel Y, Orive G, Lertxundi U (2022) Hazardous drugs (NIOSH’s list-group 1) in healthcare settings: Also a hazard for the environment? Sci Total Environ 817:152954 Connor TH, MacKenzie BA, DeBord DG, Trout DB, O’Callaghan JP (2016) NIOSH list of antineoplastic and other hazardous drugs in healthcare settings 2016 Sabah S, Aghamohammadi M, Alizadeh N (2006) Solid-State valproate ion selective sensor based on conducting polypyrrole films for determination of valproate in pharmaceutical preparations. Sens Actuators B Chem 114:489–496 Allain P, Turcant A, Premel-Cabic A (1989) Automated fluoroimmunoassay of theophylline and valproic acid by flow-injection analysis with use of HPLC instruments. Clin Chem 35:469–470 Probert F, Ruiz-Rodado V, Zhang X, te Vruchte D, Claridge TD, Edgar M et al (2016) Urinary excretion and metabolism of miglustat and valproate in patients with Niemann-Pick type C1 disease: One-and two-dimensional solution-state 1H NMR studies. J Pharm Biomed Anal 117:276–288 de Morais B, de Lima G, Pinheiro C, Burrow R, Back D, San Gil R et al (2015) Multinuclear NMR and crystallographic study of diorganotin valproates–Part II. Polyhedron 102:344–352 Belin GK, Krähenbühl S, Hauser PC (2007) Direct determination of valproic acid in biological fluids by capillary electrophoresis with contactless conductivity detection. J Chromatogr B 847:205–209 Cooreman S, Cuypers E, De Doncker M, Van Hee P, Uyttenbroeck W, Neels H (2008) Comparison of three immunoassays and one GC-MS method for the determination of valproic acid. Immuno-analyse Biologie Spécialisée 23:240–244 Fernández-Campos F, Calpena A, Soy D, Colom H (2012) Determination of total and unbound concentrations of valproic acid in human plasma by liquid chromatography-tandem mass spectrometry. J Liq Chromatogr Relat Technol 35:1171–1183 Matsuura K, Ohmori T, Nakamura M, Itoh Y, Hirano K (2008) A simple and rapid determination of valproic acid in human plasma using a non-porous silica column and liquid chromatography with tandem mass spectrometric detection. Biomed Chromatogr 22:387–393 Cheng H, Liu Z, Blum W, Byrd JC, Klisovic R, Grever MR et al (2007) Quantification of valproic acid and its metabolite 2-propyl-4-pentenoic acid in human plasma using HPLC-MS/MS. J Chromatogr B 850:206–212 Roy B, Singh B, Rizal A, Malik C (2014) Bioanalytical method development and validation of valproate semisodium in human plasma by LC–MS/MS. Int J Pharm Qual Assur 5:6–12 Jain DS, Subbaiah G, Sanyal M, Shrivastav P (2007) A high throughput and selective method for the estimation of valproic acid an antiepileptic drug in human plasma by tandem LC–MS/MS. Talanta 72:80–88 Gao S, Miao H, Tao X, Jiang B, Xiao Y, Cai F et al (2011) LC–MS/MS method for simultaneous determination of valproic acid and major metabolites in human plasma. J Chromatogr B 879:1939–1944 Giannakis S, Rtimi S, Pulgarin C (2017) Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. Molecules 22:1070 Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM (2019) Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J Environ Manage 238:25–40 Kamali F, Shirini F (2021) An efficient one-pot multi-component synthesis of spirooxindoles using Fe3O4/g-C3N4 nanocomposite as a green and reusable catalyst in aqueous media. J Mol Struct 1227:129654 Mousavi M, Habibi-Yangjeh A, Seifzadeh D (2018) Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: synthesis, characterization, and visible-light photocatalytic performance for environmental purposes. J Mater Sci Technol 34:1638–1651 Gupta R, Boruah B, Modak JM, Madras G (2019) Kinetic study of Z-scheme C3N4/CuWO4 photocatalyst towards solar light inactivation of mixed populated bacteria. J Photochem Photobiol A 372:108–121 Tahir B, Tahir M, Amin NAS (2019) Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane. Appl Surf Sci 493:18–31 Hernández-Uresti D, Vázquez A, Sanchez-Martinez D, Obregón S (2016) Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation. J Photochem Photobiol A 324:47–52 Kong Z, Yuan Y-J, Chen D, Fang G, Yang Y, Yang S et al (2017) Noble-metal-free MoS 2 nanosheet modified-InVO 4 heterostructures for enhanced visible-light-driven photocatalytic H 2 production. Dalton Trans 46:2072–2076 Cai Z, Dwivedi AD, Lee W-N, Zhao X, Liu W, Sillanpää M et al (2018) Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ Sci Nano 5:27–47 Padhye LP, Yao H, Kung’u FT, Huang C-H (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276 Mousavi M, Hamzehloo M, Ghasemi JB (2020) Deposited CuBi2O4 and Bi3ClO4 nanoparticles on g-C3N4 nanosheet: a promising visible light-induced photocatalyst toward the removal of tetracycline hydrochloride and rhodamine B. J Mater Sci 55:7775–7791 Mousavi M, Habibi-Yangjeh A (2016) Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J Colloid Interface Sci 465:83–92 Goudarzy F, Zolgharnein J, Ghasemi JB (2022) Determination and degradation of Carbamazepine using g-C3N4@ CuS nanocomposite as sensitive fluorescence sensor and efficient photocatalyst. Inorg Chem Commun: 109512 Zolgharnein J, Shahmoradi A, Ghasemi JB (2013) Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. J Chemom 27:12–20 Farahani SD, Zolgharnein J (2021) Multivariate optimization of high removal of lead (II) using an efficient synthesized Ni-based metal–organic framework adsorbent. Chin J Chem Eng 29:146–153 Zolgharnein J, Feshki S (2017) Solid-phase extraction and separation of Brilliant Green by Fe3O4 magnetic nano-particles functionalized by sodium dodecyl sulphate from aqueous solution: multivariate optimization and adsorption characterization. Desalin Water Treat 75:58–69 Zolgharnein J, Feshki S (2019) Multivariate optimization for preconcentration and separation of brilliant green using magnetite nanoparticles functionalized by Cetyltrimethylamonium Bromide. J Anal Chem 74:744–755 Liu G, Yang X, Li T, She Y, Wang S, Wang J et al (2015) Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Mater Lett 160:472–475 Tang Y, Rong N, Liu F, Chu M, Dong H, Zhang Y et al (2016) Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Appl Surf Sci 361:133–140 USP USP (2020) USP 43-NF 38. United States Pharmacopeial Convention, Inc., Online version Fan K, Jin Z, Yang H, Liu D, Hu H, Bi Y (2017) Promotion of the excited electron transfer over Ni-and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1− xS2) for hydrogen Production under visible light irradiation. Sci Rep 7:1–10 Fang LJ, Li YH, Liu PF, Wang DP, Zeng HD, Wang XL et al (2017) Facile fabrication of large-aspect-ratio g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. ACS Sustain Chem Eng 5:2039–2043 Wang M, Cui S, Yang X, Bi W (2015) Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta 132:922–928 Shekofteh-Gohari M, Habibi-Yangjeh A (2016) Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4. J Ind Eng Chem 44:174–184 Kosmulski M (2018) The pH dependent surface charging and points of zero charge. VII. Update. Adv Colloid Interface Sci 251:115–38 Zolgharnein J, Shahmoradi A, Zolgharnein P, Amani S (2016) Multivariate optimization and adsorption characterization of As (III) by using fraxinus tree leaves. Chem Eng Commun 203:210–223 Gudarzy F, Moghaddam AB, Mozaffari S, Ganjkhanlou Y, Kazemzad M, Zahed R et al (2013) A lanthanide nanoparticle-based luminescent probe for folic acid. Microchim Acta 180:1257–1262 Goudarzy F, Zolgharnein J, Alizadeh V (2022) Modified Eu3+ doped Y2O3 Nanoparticles as Turn-on Fluorescence Sensor for Sensitive Determination of Methamphetamine. J Anal Chem 77:711–716 Zobeiri E, Bayandori Moghaddam A, Gudarzy F, Mohammadi H, Mozaffari S, Ganjkhanlou Y (2015) Modified Eu-doped Y2O3 nanoparticles as turn-off luminescent probes for the sensitive detection of pyridoxine. Luminescence 30:290–295 Bayandori Moghaddam A, Gudarzy F, Ganjkhanlou Y (2014) A fluorescent probe for detecting thiamine using the luminescence intensity of nanoparticles. J Fluoresc 24:1025–1030 Afshani J, Badiei A, Karimi M, Lashgari N, Ziarani GM (2016) A single fluorescent sensor for Hg2+ and discriminately detection of Cr3+ and Cr (VI). J Fluoresc 26:263–270 Nazerdeylami S, Ghasemi JB, Amiri A, Ziarani GM, Badiei A (2020) A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cyclodextrin grafted on graphene oxide. Diam Relat Mater 109:108032 Lakowicz JR (1983) Quenching of fluorescence. Princ Fluoresc Spectrosc: 257–301 Nazerdeylami S, Ghasemi JB, Badiei A (2020) Anthracene modified graphene oxide-silica as an optical sensor for selective detection of Cu2+ and I− ions. Int J Environ Anal Chem 100:686–701 Liang J, Huang S, Zeng D, He Z, Ji X, Ai X et al (2006) CdSe quantum dots as luminescent probes for spironolactone determination. Talanta 69:126–130 Rastgordani M, Zolgharnein J (2021) Simultaneous determination and optimization of titan yellow and reactive blue 4 dyes removal using chitosan@ hydroxyapatite nanocomposites. J Polym Environ 29:1789–1807 Kuruvilla A, Uretsky N (1981) The interaction of chlordiazepoxide and sodium valproate in the nucleus accumbens of the rat. Life Sci 28:393–399 Al Za’abi M, Ahmed R, Al Asmi A, Al-Zakwani I (2013) Utilization patterns of antiepileptic drugs among adult epileptic patients at a tertiary hospital in Oman. Int J Pharm Pract 21:117–122 Patsalos PN (2013) Drug interactions with the newer antiepileptic drugs (AEDs)—part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet 52:927–966 Mole TB, Appleton R, Marson A (2015) Withholding the choice of sodium valproate to young women with generalised epilepsy: Are we causing more harm than good? Seizure 24:127–130 Haranaka-Funai D, Didier F, Gimenez J, Marco P, Esplugas S, Machulek-Junior A (2017) Photocatalytic treatment of valproic acid sodium salt with TiO2 in different experimental devices: An economic and energetic comparison. Chem Eng J 327:656–665 Iordache S, Tutunaru B, Samide A, Tigae C, Simionescu A, Popescu A (2021) Electrochemical degradation and thermal deactivation of valproic acid drug. Int J Electrochem Sci 16:210346 Mannu A, Di Pietro ME, Mele A (2020) Band-Gap energies of choline chloride and triphenylmethylphosphoniumbromide-based systems. Molecules 25:1495 Zhu Z, Huo P, Lu Z, Yan Y, Liu Z, Shi W et al (2018) Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator. Chem Eng J 331:615–625 Habibi-Yangjeh A, Mousavi M (2018) Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv Powder Technol 29:1379–1392 Luo J, Chen J, Chen X, Ning X, Zhan L, Zhou X (2021) Construction of cerium oxide nanoparticles immobilized on the surface of zinc vanadate nanoflowers for accelerated photocatalytic degradation of tetracycline under visible light irradiation. J Colloid Interface Sci 587:831–844 Luo J, Ning X, Zhan L, Zhou X (2021) Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep Purif Technol 255:117691 Begum S, Ahmaruzzaman M (2018) Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. J Photochem Photobiol B 184:44–53 Zhang Y, Zhang J, Xiao Y, Chang VW, Lim T-T (2016) Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate. Chem Eng J 302:526–534 Helaïli N, Bessekhouad Y, Bouguelia A, Trari M (2010) p-Cu2O/n-ZnO heterojunction applied to visible light Orange II degradation. Sol Energy 84:1187–1192 Khataee A, Pons M-N, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J Hazard Mater 168:451–457 Zarei E (2019) A strategy for degradation of 2, 5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode. Iranian J Catal 9:99–108 Akhundi A, Habibi-Yangjeh A (2016) Codeposition of AgI and Ag2CrO4 on g-C3N4/Fe3O4 nanocomposite: novel magnetically separable visible-light-driven photocatalysts with enhanced activity. Adv Powder Technol 27:2496–2506 Habibi-Yangjeh A, Akhundi A (2016) Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J Mol Catal A Chem 415:122–130 Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564 Fenton HJH (1894) LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910 Divyapriya G, Nidheesh PV (2020) Importance of graphene in the electro-Fenton process. ACS Omega 5:4725–4732 Barbusiński K (2009) Fenton reaction-controversy concerning the chemistry. Ecol Chem Eng S 16:347–358