A New Semi-greedy Approach to Enhance Drillhole Planning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bilal, N. (2014). Métaheuristiques hybrides pour les problèmes de recouvrement et recouvrementpartiel d’ensembles appliqués au problème de positionnement des trous de forage dans les mines.Ph.D. thesis Polytechnique Montréal.
Bilal, N., Galinier, P., & Guibault, F. (2013). A new formulation of the set covering problem formetaheuristic approaches. ISRN Operations Research, 2013.
Bilal, N., Galinier, P., & Guibault, F. (2014). An iterated-tabu-search heuristic for a variant of the partial set covering problem. Journal of Heuristics, 20, 143–164.
Chilès, J.-P., & Delfiner, P. (2012). Geostatistics. Berlin: Wiley. https://doi.org/10.1002/9781118136188.
Daoust, C., Voicu, G., Brisson, H., & Gauthier, M. (2011). Geological setting of the Paleoproterozoic Rosebel gold district, Guiana shield, Suriname. Journal of South American Earth Sciences, 32, 222–245.
Fatehi, M., Haroni, H. A., & Morshedy, A. H. (2017). Designing infill directional drilling in mineral exploration by using particle swarm optimization algorithm. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3209-4.
Gershon, M., Allen, L. E., & Manley, G. (1988). Application of a new approach for drillholes location optimization. International Journal of Surface Mining, Reclamation, and Environment, 2, 27–31.
Hart, J. P., & Shogan, A. W. (1987). Semi-greedy heuristics: An empirical study. Operations Research Letters, 6, 107–114.
Jafrasteh, B., & Fathianpour, N. (2017). Optimal location of additional exploratory drillholes using a fuzzy-artificial bee colony algorithm. Arabian Journal of Geosciences, 10, 213. https://doi.org/10.1007/s12517-017-2948-6.
Journel, A. G. (1974). Geostatistics for conditional simulation of ore bodies. Economic Geology, 69, 673–687.
Journel, A. G. (1982). The indicator approach to estimation of spatial distributions. In Proceedings of the 17th APCOM international symposium. New York (pp. 793–806).
Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Berlin: Springer. https://doi.org/10.1007/978-1-4684-2001-2_9.
Kim, Y. C., Myers, D. E., & Knudsen, H. (1977). Advanced geostatistics in ore reserve estimation and mine planning (practitioner’s guide). Technical report Arizona Univ.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.
Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.
McBratney, A., Webster, R., & Burgess, T. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables—I: Theory and method. Computers and Geosciences, 7, 331–334.
Mohammadi, S. S., Hezarkhani, A., & Tercan, A. E. (2012). Optimally locating additional drillholes in three dimensions using grade and simulated annealing. Journal of the Geological Society of India, 80, 700–706.
Parker, H. M. (2012). Reconciliation principles for the mining industry. Mining Technology, 121, 160–176.
Pilger, G. G., Costa, J. F. C. L., & Koppe, J. C. (2001). Additional samples: Where they should be located. Natural Resources Research, 10, 197–207.
Pinheiro, M., Emery, X., Rocha, A. M. A., Miranda, T., & Lamas, L. (2017). Drillholes plans optimization methodology combining geostatistical simulation and simulated annealing. Tunnelling and Underground Space Technology, 70, 65–75.
Scheck, D. E., & Chou, D.-R. (1983). Optimum locations for exploratory drillholes. International Journal of Mining Engineering, 1, 343–355.
Soltani, S., Hezarkhani, A., Erhan Tercan, A., & Karimi, B. (2011). Use of genetic algorithm in optimally locating additional drillholes. Journal of Mining Science, 47, 62–72.
Zagré, G. E., Marcotte, D., Gamache, M., & Guibault, F. (2018). New tabu algorithm for positioning mining drillholes with blocks uncertainty. Natural Resources Research, 28, 609–629.