A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking

Journal of Atmospheric and Oceanic Technology - Tập 31 Số 5 - Trang 1181-1188 - 2014
Evan Mason1, Ananda Pascual1, James C. McWilliams2
1Instituto Mediterráneo de Estudios Avanzados, Consejo Superior de Investigaciones Científicas, University of the Balearic Islands, Esporles, Illes Balears, Spain
2Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Tóm tắt

AbstractThis paper presents a software tool that enables the identification and automated tracking of oceanic eddies observed with satellite altimetry in user-specified regions throughout the global ocean. As input, the code requires sequential maps of sea level anomalies such as those provided by Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data. Outputs take the form of (i) data files containing eddy properties, including position, radius, amplitude, and azimuthal (geostrophic) speed; and (ii) sequential image maps showing sea surface height maps with active eddy centers and tracks overlaid. The results given are from a demonstration in the Canary Basin region of the northeast Atlantic and are comparable with a published global eddy track database. Some discrepancies between the two datasets include eddy radius magnitude, and the distributions of eddy births and deaths. The discrepancies may be related to differences in the eddy identification methods, and also possibly to differences in the smoothing of the sea surface height maps. The code is written in Python and is made freely available under a GNU license (http://www.imedea.uib.es/users/emason/py-eddy-tracker/).

Từ khóa


Tài liệu tham khảo

AVISO, 2013

Barton, 2004, Variability in the Canary Islands area of filament-eddy exchanges, Prog. Oceanogr., 62, 71, 10.1016/j.pocean.2004.07.003

Beron-Vera, 2013, Objective detection of oceanic eddies and the Agulhas leakage, J. Phys. Oceanogr., 43, 1426, 10.1175/JPO-D-12-0171.1

Chaigneau, 2008, Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns, Prog. Oceanogr., 79, 106, 10.1016/j.pocean.2008.10.013

Chelton, 2007, Global observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606, 10.1029/2007GL030812

Chelton, 2011, The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll, Science, 334, 328, 10.1126/science.1208897

Chelton, 2011, Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167, 10.1016/j.pocean.2011.01.002

Doglioli, 2007, Tracking coherent structures in a regional ocean model with wavelet analysis: Application to cape basin eddies, J. Geophys. Res., 112, C05043, 10.1029/2006JC003952

Early, 2011, The evolution and propagation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41, 1535, 10.1175/2011JPO4601.1

Gruber, 2011, Eddy-induced reduction of biological production in eastern boundary upwelling systems, Nat. Geosci., 4, 787, 10.1038/ngeo1273

Halo, 2014, Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models, Deep-Sea Res. II, 10.1016/j.dsr2.2013.10.015

Hunter, 2007, Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55

Isern-Fontanet, 2003, Identification of marine eddies from altimetric maps, J. Atmos. Oceanic Technol., 20, 772, 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2

Kurian, 2011, Eddy properties in the California Current System, J. Geophys. Res., 116, C08027, 10.1029/2010JC006895

McWilliams, 2008, 10.1029/177GM03

Morrow, 2004, Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311, 10.1029/2004GL020974

Nencioli, 2010, A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, J. Atmos. Oceanic Technol., 27, 564, 10.1175/2009JTECHO725.1

Neu, 2013, IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms, Bull. Amer. Meteor. Soc., 94, 529, 10.1175/BAMS-D-11-00154.1

Oliphant, 2007, Python for scientific computing, Comput. Sci. Eng., 9, 10.1109/MCSE.2007.58

Pascual, 2006, Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophys. Res. Lett., 33, L02611, 10.1029/2005GL024633

Penven, 2005, Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach, J. Geophys. Res., 110, C10021, 10.1029/2005JC002945

Rubio, 2009, Mesoscale eddy activity in the southern Benguela upwelling system from satellite altimetry and model data, Prog. Oceanogr., 83, 288, 10.1016/j.pocean.2009.07.029

Sangrà, 2009, The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic, Deep-Sea Res. I, 56, 2100, 10.1016/j.dsr.2009.08.008

Souza, 2011, Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean, Ocean Sci., 7, 317, 10.5194/os-7-317-2011

Stammer, 1997, Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements, J. Phys. Oceanogr., 27, 1743, 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2

Stammer, 1998, On eddy characteristics, eddy transports, and mean flow properties, J. Phys. Oceanogr., 28, 727, 10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2

Stramma, 2013, On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru, Biogeosci. Discuss., 10, 9179, 10.5194/bgd-10-9179-2013

Ubelmann, 2011, Vorticity structures in the tropical Pacific from a numerical simulation, J. Phys. Oceanogr., 41, 1455, 10.1175/2011JPO4507.1