A New Ridge Estimator for the Poisson Regression Model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Algamal ZY (2012) Diagnostic in poisson regression models. Electron J Appl Stat Anal 5:178–186
Algamal ZY (2018a) A new method for choosing the biasing parameter in ridge estimator for generalized linear model. Chemom Intell Lab Syst 183:96–101
Algamal ZY (2018b) Shrinkage parameter selection via modified cross-validation approach for ridge regression model. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1508704
Algamal ZY, Alanaz MM (2018) Proposed methods in estimating the ridge regression parameter in Poisson regression model. Electron J Appl Stat Anal 11:506–515
Algamal ZY, Lee MH (2015a) Adjusted adaptive lasso in high-dimensional poisson regression model. Mod Appl Sci 9:170–177. https://doi.org/10.5539/mas.v9n4p170
Algamal ZY, Lee MH (2015b) Applying penalized binary logistic regression with correlation based elastic net for variables selection. J Mod Appl Stat Method 14:15
Algamal ZY, Lee MH (2015c) High dimensional logistic regression model using adjusted elastic net penalty. Pak J Stat Oper Res 11:667–676
Algamal ZY, Lee MH (2015d) Penalized poisson regression model using adaptive modified elastic net penalty. Electron J Appl Stat Anal 8:236–245
Algamal ZY, Lee MH, Al-Fakih AM, Aziz M (2017) High-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives based on the sparse logistic regression model with a bridge penalty. J Chemom 31:e2889
Asar Y, Genç A (2015) New shrinkage parameters for the Liu-type logistic estimators. Commun Stat Simul Comput 45:1094–1103. https://doi.org/10.1080/03610918.2014.995815
Asar Y, Genç A (2017) A new two-parameter estimator for the poisson regression model. Iran J Sci Technol Trans A Sci. https://doi.org/10.1007/s40995-017-0174-4
Batah FSM, Ramanathan TV, Gore SD (2008) The efficiency of modified jackknife and ridge type regression estimators—a comparison. Surv Math Appl 3:111–122
Cameron AC, Trivedi PK (2013) Regression analysis of count data, vol 53. Cambridge University Press, Cambridge
De Jong P, Heller GZ (2008) Generalized linear models for insurance data, vol 10. Cambridge University Press, Cambridge
Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67
KaÇiranlar S, Dawoud I (2017) On the performance of the Poisson and the negative binomial ridge predictors. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2017.1324978
Khurana M, Chaubey YP, Chandra S (2014) Jackknifing the ridge regression estimator: a revisit. Commun Stat Theory Method 43:5249–5262
Kibria BMG (2003) Performance of some new ridge regression estimators. Commun Stat Simul Comput 32:419–435. https://doi.org/10.1081/SAC-120017499
Kibria BMG, Banik S (2016) Some ridge regression estimators and their performances. J Mod Appl Stat Method 15:12–24
Kibria BMG, Månsson K, Shukur G (2015) A simulation study of some biasing parameters for the ridge type estimation of poisson regression. Commun Stat Simul Comput 44:943–957. https://doi.org/10.1080/03610918.2013.796981
Månsson K, Shukur G (2011) A poisson ridge regression estimator. Econ Model 28:1475–1481. https://doi.org/10.1016/j.econmod.2011.02.030
Montgomery DC, Peck EA, Vining GG (2015) Introduction to linear regression analysis. Wiley, New York
Nyquist H (1988) Applications of the jackknife procedure in ridge regression. Comput Stat Data Anal 6:177–183
Özkale MR (2008) A jackknifed ridge estimator in the linear regression model with heteroscedastic or correlated errors. Stat Probab Lett 78:3159–3169. https://doi.org/10.1016/j.spl.2008.05.039
Singh B, Chaubey Y, Dwivedi T (1986) An almost unbiased ridge estimator. Sank Indian J Stat Ser B 13:342–346