A New Model for the Lifetime of Fossil Fuel Resources
Tóm tắt
A critical examination of Hubbert’s model proves that it does not account for several factors that have significantly influenced the production of petroleum and other fossil fuels. The effect of these factors comes into the price of the fossil fuels, and the latter has a significant influence on the demand and rate of production of energy resources as well as on the long-term rate of production growth at both the regional and global levels. Based on several observations of historical production data, a simple mathematical model is constructed and presented in this paper for the lifetime of a fossil fuel resource. The recent data of global petroleum and natural gas production show that a very important period in the life of energy resources is a period when the demand of these resources increases almost linearly. The linear part of the production curve makes the entire lifetime production of the resource asymmetric. Information on the total available quantity of a resource at any time and of the average slope during this linear period yields an estimate of the timescale, T
2, when peak production is reached and depletion follows. The total available quantity of the energy resource is laden with significant uncertainty, which propagates in the estimates of the timescale of the peak production in any resource model. The time asymmetry of the current model leads to a delay of the timescale, when the onset of the resource production commences (e.g., peak oil). However, the rate of the resource production decline is significantly higher than that predicted by other models that use a symmetrical curve-fitting method.