A New Method for Temperature Spatial Interpolation Based on Sparse Historical Stations

Journal of Climate - Tập 31 Số 5 - Trang 1757-1770 - 2018
Chengdong Xu1, Jinfeng Wang1, Qingxiang Li2
1State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
2School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Tóm tắt

Long-term grid historical temperature datasets are the foundation of climate change research. Datasets developed by traditional interpolation methods usually contain data for a period of less than 50 yr, with a relatively low spatial resolution owing to the sparse distribution of stations in the historical period. In this study, the point interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (P-BSHADE) method has been used to interpolate 1-km grids of monthly surface air temperatures in the historical period of 1900–50 in China. The method can be used to remedy the station bias resulting from sparse coverage, and it considers the characteristics of spatial autocorrelation and nonhomogeneity of the temperature distribution to obtain unbiased and minimum error variance estimates. The results have been compared with those from widely used methods such as kriging, inverse distance weighting (IDW), and a combined spline with kriging (TPS-KRG) method, both theoretically and empirically. The leave-one-out cross-validation method using a real dataset was implemented. The root-mean-square error (RMSE) [mean absolute error (MAE)] for P-BSHADE is 0.98°C (0.75°C), while those for TPS-KRG, kriging, and IDW are 1.46° (1.07°), 2.23° (1.51°), and 2.64°C (1.85°C), respectively. The results of validation using a simulated dataset also present the smallest error for P-BSHADE, demonstrating its empirical superiority. In addition to its empirical superiority, the method also can produce a map of the estimated error variance, representing the uncertainty of estimation.

Từ khóa


Tài liệu tham khảo

10.1016/S0303-2434(01)85006-6

10.1002/joc.689

10.1029/2005JD006548

Burrough, P. A., and R. A. McDonnell, 1998:Principles of Geographical Information Systems.Oxford University Press, 333 pp.

10.1002/jgrd.50615

10.1002/joc.4639

10.1088/1748-9326/aa68e8

Christakos, G., 1992:Random Field Models in Earth Sciences.Academic Press, 474 pp.

10.1002/joc.1322

10.3354/cr022099

10.1002/joc.937

10.1175/2007JAMC1536.1

10.1175/2007JAMC1356.1

10.1016/j.jag.2011.01.005

10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2

10.1029/2007JD008470

Goovaerts, P., 1997:Geostatistics for Natural Resources Evaluation.Oxford University Press, 483 pp.

10.1175/JHM-D-12-014.1

Haining, R., 2003:Spatial Data Analysis: Theory and Practice.Cambridge University Press, 432 pp.

10.1029/JD092iD11p13345

10.1029/2010RG000345

Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface.Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

10.1029/2008JD010201

10.1002/joc.1276

10.1029/2008JD010100

10.1002/joc.3370140107

Isaaks, E. H., and R. M. Srivastava, 1989:Applied Geostatistics.Oxford University Press, 561 pp.

10.1016/S1364-8152(01)00008-1

10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2

10.1007/s00376-015-5194-4

10.1002/wea.432

10.1007/s10584-010-9836-3

10.1029/1999RG900002

10.1029/2011JD017139

10.1175/1520-0477(1989)070<0265:UBIAAS>2.0.CO;2

10.1002/2013JD020803

10.1029/2011JD016187

10.1007/s11434-010-3209-1

10.1175/BAMS-D-16-0092.1

10.1002/joc.1181

10.1016/S0168-1923(98)00102-6

10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2

10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2

Olea, R. A., 1999:Geostatistics for Engineers and Earth Scientists.Springer, 303 pp.

10.1029/96GB01894

10.1016/j.agrformet.2006.07.004

Wang J.-F., 2011, PLoS One, 6

10.1016/j.spasta.2012.08.001

10.1002/2013JD020542

10.1175/JCLI-D-12-00633.1

10.1002/jgrd.50791

10.1007/s00382-017-3755-1

10.1007/s00376-008-0157-7

10.1002/joc.1971

Yu, H.L., G. Christakos, and P. Bogaert, 2010: Dealing with spatiotemporal heterogeneity: The generalized BME model.Progress in Spatial Analysis: Methods and Applications, A. Páez et al., Eds., Springer, 75–91.