Phương Pháp Mới Dự Đoán Thành Phần Của Bê Tông Tự Lèn (SCC) Bao Gồm Tro Bay (FA) Sử Dụng Phân Tích Khả Năng Sản Xuất (DEA)

Arabian Journal for Science and Engineering - Tập 46 - Trang 4439-4460 - 2020
Farzad Rezai Balf1, Hamidreza Mahmoodi Kordkheili2, Alireza Mahmoodi Kordkheili3
1Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
2Department of Civil Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
3Department of Civil Engineering, Aryan Institute of Science and Technology, Babol, Iran

Tóm tắt

Bê tông tự lèn (SCC) là một hỗn hợp lỏng thích hợp để đổ vào các kết cấu có cốt thép dày mà không cần rung. Ứng dụng của SCC đã được sử dụng rộng rãi trong thực tế. Tuy nhiên, việc ứng dụng này thường bị hạn chế bởi sự thiếu hiểu biết về các vật liệu phối trộn có được từ các thử nghiệm trong phòng thí nghiệm. Bài báo này trình bày một phương pháp toán học không tham số cho việc thiết kế các hỗn hợp SCC có chứa tro bay, được gọi là phân tích khả năng sản xuất (DEA). DEA có khả năng ước lượng một tập hợp các đơn vị (một đơn vị bao gồm nhiều đầu vào – nhiều đầu ra), nhằm xác định hiệu quả của chúng. Để tạo ra các mô hình DEA, một cơ sở dữ liệu về dữ liệu thử nghiệm đã được thu thập từ tài liệu kỹ thuật và được áp dụng. Dữ liệu áp dụng trong phương pháp phân tích khả năng sản xuất được tổ chức trong định dạng của sáu tham số đầu vào mà bao gồm phụ gia siêu dẻo, cốt liệu thô, cốt liệu mịn, tỷ lệ nước-kết dính, tỷ lệ thay thế tro bay, và tổng lượng kết dính. Bốn tham số đầu ra được dự đoán dựa trên phương pháp DEA là thời gian chảy V, độ sụt, tỷ lệ L-box, và cường độ nén hình trụ ở 28 ngày của SCC bao gồm tro bay. Trong bài báo này, chúng tôi dự đoán mức độ đầu vào tối ưu cần thiết để tạo ra mức độ đầu ra yêu cầu của SCC bằng cách sử dụng DEA. Để xác thực tính hữu ích của mô hình được đề xuất và nâng cao khả năng của nó, một so sánh giữa mô hình DEA với các kết quả thực nghiệm của các nhà nghiên cứu khác và các mô hình khác như ANN đã được thực hiện, và đã đạt được sự đồng thuận tốt.

Từ khóa

#Bê tông tự lèn #Tro bay #Phân tích khả năng sản xuất #Phương pháp không tham số #Đầu vào #Đầu ra

Tài liệu tham khảo

Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28(1), 707–718 (2017) Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M.: Application of new information technology on concrete: an overview. J. Civ. Eng. Manag. 17(2), 248–258 (2011) Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18(6), 1753–1758 (2014) Gencel, O.; Cengiz, O.Z.E.L.; Koksal, F.; Martinez-Barrera, G.; Brostow, W.; Polat, H.: Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater. Sci. 19(2), 203–215 (2013) Tayfur, G.; Erdem, T.K.; Kırca, Ö.: Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. J. Mater. Civ. Eng. 26(11), 04014079 (2014) Yeh, I.C.: Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 18(4), 597–604 (2006) Pham, A.D.; Hoang, N.D.; Nguyen, Q.T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30(3), 06015002 (2016) Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Sekar, S.K.; Samui, P.: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fract. Mech. 98, 29–43 (2013) Yan, K.; Shi, C.: Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 24(8), 1479–1485 (2010) Nair, Y.C.; Binsha, P.; Pradeep, V.V.; Sowmya, V.; Soman, K.P.: Spreadsheet implementation of random kitchen sink for classification. In: IEEE Sponsored 2nd International Conference on Innovations in Information. Embedded and Communication Systems (ICIIECS) (2015) Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B.: Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 12(1), 24 (2018) Prakash, A.J.; Sathyan, D.; Anand, K.B.; Premjith, B.: Prediction of passing ability of self compacting concrete regularized least square approach. In: Proceedings of International Conference on Emerging and Sustainable Technologies for Infrastructure Systems, pp. 323–328 (2016) Jin-li, W.; Hai-qing, L.: Application of neural network in prediction for self-compaction concrete. In: Fuzzy Information and Engineering, pp. 733–738. Springer, Berlin (2010) Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27(1), 404–414 (2012) Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42(10), 780–786 (2011) Güneyisi, E.; Gesoglu, M.; Özbay, E.: Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater. Struct. 42(4), 469–484 (2009) Zhou, S.Q.; Shi, J.J.; Yang, X.F.; Lei, L.: Application of neural network in prediction for flowing property of self-compacting concrete. J. Water Resour. Archit. Eng. 4, 012 (2005) Ni, H.G.; Wang, J.Z.: Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 30(8), 1245–1250 (2000) Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Caglar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006) Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006) Topçu, İ.B.; Sarıdemir, M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 42(1), 74–82 (2008) Li, F.X.; Yu, Q.J.; Wei, J.X.; Li, J.X.: Predicting the workability of self-compacting concrete using artificial neural network. Adv. Mater. Res. 168, 1730–1734 (2011) Prasad, B.R.; Eskandari, H.; Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009) Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007) Yeh, I.: Modeling slump of concrete with fly ash and superplasticizer. Comput. Concr. 5(6), 559–572 (2008) Yeh, I.: Prediction of workability of concrete using design of experiments for mixtures. Comput. Concr. 5(1), 1–20 (2008) Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015) Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J.: Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 18(4), 903–920 (2016) Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001) Pathak, S.S.; Sharma, S.; Sood, H.; Khitoliya, R.K.: Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system. Editorial Preface 3(10), 112–118 (2012) Raheman, A.; Modani, P.O.: Prediction of properties of self compacting concrete using artificial neural network. Int. J. Eng. Res. Appl. 3(4), 333–339 (2013) Malagavelli, V.; Manalel, P.A.: Modeling of compressive strength of admixture-based self compacting concrete using fuzzy logic and artificial neural networks. Asian J. Appl. Sci. 7(7), 536–551 (2014) Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998) Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25(7), 849–857 (2003) Tang, C.W.: Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput. Concr. 3(5), 335–355 (2006) Hossain, K.; Lachemi, M.; Easa, S.M.: Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action. Comput. Concr. 3(6), 439–454 (2006) Tang, C.W.; Lin, Y.; Kuo, S.F.: Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs. Comput. Concr. 4(6), 477–497 (2007) Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007) Topcu, I.B.; Sarıdemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41(3), 305–311 (2008) Altun, F.; Kişi, Ö.; Aydin, K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 42(2), 259–265 (2008) Khatibinia, M.; Feizbakhsh, A.; Mohseni, E.; Ranjbar, M.M.: Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine. Comput. Concr. 18(6), 1065–1082 (2016) Asteris, P.G.; Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019) Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016) Asteris, P.G.; Roussis, P.C.; Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17(6), 1344 (2017) Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 1–20 (2019) Li, Z.: Advanced Concrete Technology. Wiley, Hoboken (2011) Ozawa, K.; Maekawa, K.; Kunishima, H.; Okamura, H.: Performance of concrete based on the durability design of concrete structures. Proc. Second East Asia Pacific Conf. Struct. Eng. Constr. 1, 445–456 (1989) Okamura, H.; Ozawa, K.; Ouchi, M.: Self-compacting high performance concrete. Mag. Korea Concr. Inst. 7(5), 33–41 (1995) Brooks, J.J.; Johari, M.M.; Mazloom, M.: Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(4), 293–301 (2000) Wesche, K.: Fly Ash in Concrete: Properties and Performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building (2005) Kurita, M.; Nomura, T.: Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra, V.M. (ed) Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 178, pp 159–176. ACI Special Publication (1998) Lovell, C.K.; Schmidt, P.: A comparison of alternative approaches to the measurement of productive efficiency. In: Applications of Modern Production Theory: Efficiency and Productivity, pp. 3–32. Springer, Dordrecht (1988) Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econom. 30, 16–29 (1985) Zhu, J.: Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123(1), 105–124 (2000) Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. Kluwer Academic Publishers, Boston (2002) Charnes, A.; Cooper, W.W.; Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978) Dadashi, A.; Mirbaha, B.: Prioritizing highway safety improvement projects: a Monte-Carlo based data envelopment analysis approach. Accid. Anal. Prev. 123, 387–395 (2019) Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J.: Energy performance optimization of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 149, 1414–1423 (2020) Palafox-Alcantar, P.G.; Hunt, D.V.L.; Rogers, C.D.F.: The complementary use of game theory for the circular economy: a review of waste management decision-making methods in civil engineering. Waste Manag. 102, 598–612 (2020) Zhang, J.; Li, H.; Xia, B.; Skitmore, M.: Impact of environment regulation on the efficiency of regional construction industry: a 3-stage data envelopment analysis (DEA). J. Clean. Prod. 200, 770–780 (2018) Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q.: Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 244, 118729 (2020) Banker, R.D.; Charnes, A.; Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984) Liu, F.H.F.; Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008) Balf, F.R.; Rezai, H.Z.; Jahanshahloo, G.R.; Lotfi, F.H.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36(1), 46–56 (2012) Joro, T.; Korhonen, P.; Wallenius, J.: Structural comparison of data envelopment analysis and multiple objective linear programming. Manag. Sci. 44(7), 962–970 (1998) Wang, J.; Liu, S.: A multiple objective DEA projection model for some factors varying in restricted ranges. J. Xidian Univ. 27(1), 39–43 (2000). (in Chinese) Zhu, W.; Bartos, P.J.M.: Permeation properties of self-compacting concrete. Cem. Concr. Res. 33(6), 921–926 (2003) Naik, T.R.; Kumar, R.; Ramme, B.W.; Canpolat, F.: Development of high-strength, economical self-consolidating concrete. Constr. Build. Mater. 30, 463–469 (2012) Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013) Liu, M.: Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 24(7), 1245–1252 (2010)