A New Dimensionality-Unbiased Score for Efficient and Effective Outlying Aspect Mining
Tóm tắt
Từ khóa
Tài liệu tham khảo
Angiulli F, Fassetti F, Manco G, Palopoli L (2017) Outlying property detection with numerical attributes. Data Min Knowl Disc 31(1):134–163
Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Wells JR (2014) Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE international conference on data mining workshop, pp 698–705
Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Zhu Y, Wells JR (2018) Isolation-based anomaly detection using nearest-neighbor ensembles. Comput Intell 34(4):968–998. https://doi.org/10.1111/coin.12156
Brockett PL, Xia X, Derrig RA (1998) Using Kohonen’s self-organizing feature map to uncover automobile bodily injury claims fraud. J Risk Insur 65(2):245–274. http://www.jstor.org/stable/253535
Campos GO, Zimek A, Sander J, Campello RJGB, Micenková B, Schubert E, Assent I, Houle ME (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Disc 30(4):891–927. https://doi.org/10.1007/s10618-015-0444-8
Chan PK, Fan W, Prodromidis AL, Stolfo SJ (1999) Distributed data mining in credit card fraud detection. IEEE Intell Syst Appl 14(6):67–74
Dang XH, Micenková B, Assent I, Ng RT (2013) Local outlier detection with interpretation. In: Blockeel H, Kersting K, Nijssen S, Železný F (eds) Machine learning and knowledge discovery in databases. Springer Berlin Heidelberg, Berlin, pp 304–320
Duan L, Tang G, Pei J, Bailey J, Campbell A, Tang C (2015) Mining outlying aspects on numeric data. Data Min Knowl Disc 29(5):1116–1151. https://doi.org/10.1007/s10618-014-0398-2
Gupta N, Eswaran D, Shah N, Akoglu L, Faloutsos C (2019) Beyond outlier detection: lookout for pictorial explanation. In: Berlingerio M, Bonchi F, Gärtner T, Hurley N, Ifrim G (eds) Machine learning and knowledge discovery in databases. Springer, Cham, pp 122–138
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18. https://doi.org/10.1145/1656274.1656278
Härdle W (2012) Smoothing techniques: with implementation in S. Springer, New York
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2
Keller F, Muller E, Bohm K (2012) Hics: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, IEEE Computer Society, Washington, DC, USA, ICDE’12, pp 1037–1048, https://doi.org/10.1109/ICDE.2012.88
Lin J, Keogh E, Ada Fu, Van Herle H (2005) Approximations to magic: finding unusual medical time series. In: 18th IEEE symposium on computer-based medical systems (CBMS’05), pp 329–334
Liu FT, Ting KM, Zhou Z (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data mining, pp 413–422
Liu N, Shin D, Hu X (2018) Contextual outlier interpretation. In: Proceedings of the 27th international joint conference on artificial intelligence. AAAI Press, IJCAI’18, pp 2461–2467
Mejía-Lavalle M, Sánchez Vivar A (2009) Outlier detection with explanation facility. In: Perner P (ed) Machine learning and data mining in pattern recognition. Springer Berlin Heidelberg, Berlin, pp 454–464
Micenková B, Ng RT, Dang X, Assent I (2013) Explaining outliers by subspace separability. In: 2013 IEEE 13th international conference on data mining, pp 518–527, https://doi.org/10.1109/ICDM.2013.132
Muandet K, Fukumizu K, Sriperumbudur B, Schölkopf B (2017) Kernel mean embedding of distributions: a review and beyond. Found Trends Mach Learn 10(1–2):1–141
Samariya D, Ma J (2021) Mining outlying aspects on healthcare data. In: Siuly S, Wang H, Chen L, Guo Y, Xing C (eds) Health information science. Springer, Cham, pp 160–170
Samariya D, Thakkar A (2021) A comprehensive survey of anomaly detection algorithms. Ann Data Sci. https://doi.org/10.1007/s40745-021-00362-9
Samariya D, Aryal S, Ting KM, Ma J (2020) A new effective and efficient measure for outlying aspect mining. In: Huang Z, Beek W, Wang H, Zhou R, Zhang Y (eds) Web information systems engineering—WISE 2020. Springer, Cham, pp 463–474
Samariya D, Ma J, Aryal S (2020b) A comprehensive survey on outlying aspect mining methods. arXiv preprint arXiv:2005.02637
Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London
Vinh NX, Chan J, Bailey J, Leckie C, Ramamohanarao K, Pei J (2015) Scalable outlying-inlying aspects discovery via feature ranking. In: Cao T, Lim EP, Zhou ZH, Ho TB, Cheung D, Motoda H (eds) Advances in knowledge discovery and data mining. Springer, Cham, pp 422–434
Vinh NX, Chan J, Romano S, Bailey J, Leckie C, Ramamohanarao K, Pei J (2016) Discovering outlying aspects in large datasets. Data Min Knowl Disc 30(6):1520–1555. https://doi.org/10.1007/s10618-016-0453-2
Wells JR, Ting KM (2019) A new simple and efficient density estimator that enables fast systematic search. Pattern Recognit Lett 122:92–98. https://doi.org/10.1016/j.patrec.2018.12.020
Xu H, Wang Y, Jian S, Huang Z, Wang Y, Liu N, Li F (2021) Beyond outlier detection: Outlier interpretation by attention-guided triplet deviation network. In: Proceedings of the web conference 2021, association for computing machinery, New York, NY, USA, WWW’21, pp 1328–1339, https://doi.org/10.1145/3442381.3449868
Xu YX, Pang M, Feng J, Ting KM, Jiang Y, Zhou ZH (2021) Reconstruction-based anomaly detection with completely random forest. In: Proceedings of the 2021 SIAM international conference on data mining (SDM), SIAM, pp 127–135
Zhang J, Lou M, Ling TW, Wang H (2004) Hos-miner: a system for detecting outlyting subspaces of high-dimensional data. In: Proceedings of the thirtieth international conference on very large data bases—volume 30, VLDB endowment, Toronto, Canada, VLDB’04, pp 1265–1268, http://dl.acm.org/citation.cfm?id=1316689.1316810
