A New Class of Hermite-Based Higher Order Central Fubini Polynomials

Waseem A. Khan1, Sunil Kumar Sharma2
1Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
2College of Computer & Information Sciences, Majmaah University, Majmaah, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

Dattoli, G., Lorenzutta, S., Cesarano, C.: Finite sums and generalized forms of Bernoulli polynomials. Rend. Math. 19, 385–391 (1999)

Khan, W.A.: Some properties of the generalized Apostol type Hermite-based polynomials. Kyungpook Math. J. 55, 597–614 (2015)

Kim, D.S., Kim, T.: Some identities of Bell polynomials. Sci. China Math. 58(10), 2095–2104 (2015)

Kim, D.S., Kwon, J., Dolgy, D.V., Kim, T.: On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 21(4), 589–598 (2018)

Kim, T.: A note on central factorial numbers. Proc. Jangjeon Math. Soc. 21(4), 575–588 (2018)

Kim, T., Kim, D.S.: On $$\lambda $$-Bell polynomials associated with umbral calculus. Russ. J. Math. Phys. 24(1), 69–78 (2017)

Kim, T., Kim, D.S.: Degenerate central Bell numbers and polynomials. Rev. R. Acad. Cienc. Exacts Fis. Nat. Ser. A Mat. (2019). https://doi.org/10.1007/s13398-019-00637-0

Kim, T., Kim, D.S.: A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 27(1), 76–81 (2020)

Kim, T., Kim, D.S., Jang, G.-W., Kwon, J.: Extended central factorial polynomials of the second kind. Adv. Differ. Equ. 2019, 24 (2019). https://doi.org/10.1186/s13662-019-1963-1

Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–2012 (2017)

Simsek, Y.: Computation methods for combinatorial sums and Euler type numbers related to new families of numbers. Math. Methods Appl. Sci. 40(7), 2347–2361 (2017)

Simsek, Y.: New families of special numbers for computing negative order Euler numbers and related numbers and polynomials. Appl. Anal. Discrete Math. 12, 1–35 (2018)

Kim, T., Kim, D.S., Jang, G.W., Kim, D.: Two variable higher order central Fubini polynomials. J. Inequal. Appl. 2019, 146 (2019). https://doi.org/10.1186/s13660-019-2100-0

Pathan, M.A., Khan, W.A.: Some implicit summation formulas and symmetric identities for the generalized Hermite–Bernoulli polynomials. Mediterr. J. Math. 12, 679–695 (2015)

Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Limited. Co., New York (1984)