A New Blow-Up Criterion for the 2D Generalized Tropical Climate Model
Tóm tắt
In this paper, we consider the Cauchy problem to the 2D generalized tropical climate model. We establish a new blow-up criterion only in terms of the first baroclinic mode of the vector velocity in Besov spaces with negative indices.
Tài liệu tham khảo
Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren Math. Wiss., vol. 343. Springer, Berlin (2011)
Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embedding and convolution inequalities. Commun. Part. Differ. Equ. 5, 773–789 (1980)
Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)
Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)
Fan, J., Ahmad, B., Hayat, T., Zhou, Y.: On blow-up criteria for a new Hall-MHD system. Appl. Math. Comput. 274, 20–24 (2016)
Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global cauchy problem of 2D generalized MHD equations. Monatsh Math. 175, 127–131 (2014)
Fan, J., Jia, X., Nakamura, G., Zhou, Y.: On well-posedness and blowup criteria for the magnetohydrodynamics with the hall and ion-slip effects. Z. Angew. Math. Phys. 66, 1695–1706 (2015)
Frierson, D., Majda, A., Pauluis, O.: Large scale dynamics of precipitation fronts in the tropical atmosphere, a novel relaxation limit. Commun. Math. Sci. 2, 591–626 (2004)
He, F., Ahmad, B., Hayat, T., Zhou, Y.: On regularity criteria for the 3D Hall-MHD equations in terms of the velocity. Nonlinear Anal. RWA 32, 35–51 (2016)
Gill, A.: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980)
Jacob, N.: Pseudo Differential Operators and Markov Processes. Markov Processes and Applications, vol. 3. Imperial College Press, London (2005)
Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (1980)
Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)
Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)
Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (1991)
Li, J., Titi, E.: Global well-posedness of strong solutions to a tropical climate model. Discrete Contin. Dyn. Syst. 36, 4495–4516 (2016)
Lei, Z., Zhou, Y.: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin. Dyn. Syst. 25, 575–583 (2009)
Lemari, P.G.: Recent Developments in the Navier–Stokes Problem, CRC Research Notes in Mathematics, vol. 431. Chapman & Hall, Boca Raton (2002)
Matsuno, T.: Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44, 25–42 (1966)
Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)
Ma, C., Jiang, Z., Wan, R.: Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinet. Relat. Models 99, 551–570 (2016)
Ma, C., Wan, R.: Spectral analysis and global well-posedness for a viscous tropical climate model with only a damp term. Nonlinear Anal. Real World Appl. 39, 554–567 (2018)
Wan, R.: Global small solutions to a tropical climate model without thermal diffusion. J. Math. Phys 57(2), 021507 (2016)
Wan, R., Zhou, Y.: On global existence, energy decay and blow-up criteria for the Hall-MHD system. J. Differ. Equ. 259, 5982–6008 (2015)
Wan, R., Zhou, Y.: Low regularity well-posedness for the 3D generalized Hall-MHD system. Acta Appl. Math. 147, 95–111 (2017)
Wu, X., Yu, Y., Tang, Y.: Global existence and asymptotic behavior for the 3D generalized Hall-MHD system. Nonlinear Anal. 151, 41–50 (2017)
Ye, Z.: Global regularity for a class of 2D tropical climate model. J. Math. Anal. Appl. 446, 307–321 (2016)
Yuan, B., Zhang, B.: Blow-up criterion of strong solutions to the Navier–Stokes equations in Besov spaces with negative indices. J. Differ. Equ. 242, 1–10 (2007)
Yu, Y., Wu, X., Tang, Y.: Well-posedness of a 1D transport equation with nonlocal velocity in the Lei–Lin space. Math. Methods Appl. Sci. 40(4), 947–956 (2017)
Yu, Y., Wu, X., Tang, Y.: Global regularity of the 2D liquid crystal equations with weak velocity dissipation. Comput. Math. Appl. 74(5), 920–933 (2017)
Yu, Y., Wu, X., Tang, Y.: Global well-posedness for the 2D Boussinesq system with variable viscosity and damping. Math. Methods Appl. Sci. 41(8), 3044–3061 (2018)
Zhu, M.: Global regularity for the tropical climate model with fractional diffusion on barotropic mode. Appl. Math. Lett. 81, 99–104 (2018)
Zhou, Y., Fan, J.: A regularity criterion for the 2D MHD system with zero magnetic diffusivity. J. Math. Anal. Appl. 378, 169–172 (2011)