A New Approach to Refining Land Use Types: Predicting Point-of-Interest Categories Using Weibo Check-in Data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sun, 2015, Identifying the city center using human travel flows generated from location-based social networking data, Environ. Plan. B Plan. Des., 43, 480, 10.1177/0265813515617642
Sun, 2015, Road-based travel recommendation using geo-tagged images, Comput. Environ. Urban Syst., 53, 110, 10.1016/j.compenvurbsys.2013.07.006
Noulas, A., Scellato, S., Lathia, N., and Mascolo, C. (2012, January 3–5). A Random Walk around the City: New Venue Recommendation in Location-Based Social Networks. Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, Amsterdam, The Netherlands.
Liu, C., Liu, J., Wang, J., Xu, S., Han, H., and Chen, Y. (2019). An Attention-Based Spatiotemporal Gated Recurrent Unit Network for Point-of-Interest Recommendation. ISPRS Int. J. Geo-Inf., 8.
Gan, M., and Gao, L. (2019). Discovering Memory-Based Preferences for POI Recommendation in Location-Based Social Networks. ISPRS Int. J. Geo-Inf., 8.
Sun, 2015, Investigation of Travel and Activity Patterns Using Location-based Social Network Data: A Case Study of Active Mobile Social Media Users, ISPRS Int. J. Geo-Infor., 4, 1512, 10.3390/ijgi4031512
Rizwan, M., Wanggen, W., Cervantes, O., and Gwiazdzinski, L. (2018). Using Location-Based Social Media Data to Observe Check-In Behavior and Gender Difference: Bringing Weibo Data into Play. ISPRS Int. J. Geo-Infor., 7.
Huang, 2016, Understanding human activity patterns based on space-time-semantics, ISPRS J. Photogramm. Remote Sens., 121, 1, 10.1016/j.isprsjprs.2016.08.008
Pacifici, 2009, A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification, Remote Sens. Environ., 113, 1276, 10.1016/j.rse.2009.02.014
Lu, 2006, Use of impervious surface in urban land-use classification, Remote Sens. Environ., 102, 146, 10.1016/j.rse.2006.02.010
Hu, 2012, Automated urban land-use classification with remote sensing, Int. J. Remote Sens., 34, 790, 10.1080/01431161.2012.714510
Pei, 2014, A new insight into land use classification based on aggregated mobile phone data, Int. J. Geogr. Inf. Sci., 28, 1988, 10.1080/13658816.2014.913794
Liu, 2015, Incorporating spatial interaction patterns in classifying and understanding urban land use, Int. J. Geogr. Inf. Sci., 30, 334, 10.1080/13658816.2015.1086923
Liu, 2017, Classifying urban land use by integrating remote sensing and social media data, Int. J. Geogr. Inf. Sci., 31, 1675, 10.1080/13658816.2017.1324976
Helbich, 2013, Toward mapping land-use patterns from volunteered geographic information, Int. J. Geogr. Inf. Sci., 27, 2264, 10.1080/13658816.2013.800871
Hu, T., Yang, J., Li, X., and Gong, P. (2016). Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens., 8.
Long, 2013, Featured Graphic. How Mixed is Beijing, China? A Visual Exploration of Mixed Land Use, Environ. Plan. A Econ. Space, 45, 2797, 10.1068/a130162g
White, 2016, Optical remotely sensed time series data for land cover classification: A review, ISPRS J. Photogramm. Remote Sens., 116, 55, 10.1016/j.isprsjprs.2016.03.008
Cheng, 2019, Applying a random forest method approach to model travel mode choice behavior, Travel Behav. Soc., 14, 1, 10.1016/j.tbs.2018.09.002
Gislason, 2006, Random Forests for land cover classification, Pattern Recognit. Lett., 27, 294, 10.1016/j.patrec.2005.08.011
Thanh Noi, P., and Kappas, M. (2017). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18.
Zhang, 2019, Joint Deep Learning for land cover and land use classification, Remote Sens. Environ., 221, 173, 10.1016/j.rse.2018.11.014