A Multinomial Processing Tree Model of the 2-back Working Memory Task

Computational Brain & Behavior - Tập 5 - Trang 261-278 - 2022
Michael D. Lee1, Percy K. Mistry2, Vinod Menon2,3,4
1Department of Cognitive Sciences, University of California, Irvine, Irvine, USA
2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
3Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
4Wu Tsai Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, USA

Tóm tắt

The n-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding “yes” or “no”. We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, British Journal of Psychology 109:777–798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., Neuroimage 80:62–79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.

Tài liệu tham khảo

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin & Review, 22, 366–377. Barch, D. M., et al. (2013). Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage, 80, 169–189. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86. Bilker, W. B., Hansen, J. A., Brensinger, C. M., Richard, J., Gur, R. E., & Gur, R. C. (2012). Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment, 19, 354–369. Brooks, S. P., & Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–455. Cai, W., Ryali, S., Pasumarthy, R., Talasila, V., & Menon, V. (2021). Dynamic causal brain circuits during working memory and their functional controllability. Nature Communications, 12, 1–16. Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala, J. V. (2010). Adaptive design optimization: A mutual information-based approach to model discrimination in cognitive science. Neural Computation, 22, 887–905. Cavagnaro, D. R., Pitt, M. A., & Myung, J. I. (2011). Model discrimination through adaptive experimentation. Psychonomic Bulletin & Review, 18, 204–210. Chatham, C. H., Herd, S. A., Brant, A. M., Hazy, T. E., Miyake, A., O’Reilly, R., & Friedman, N. P. (2011). From an executive network to executive control: A computational model of the n-back task. Journal of Cognitive Neuroscience, 23, 3598–3619. Coulacoglou, C. & Saklofske, D. H. (2017). Psychometrics and psychological assessment: Principles and applications. Academic Press. Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14, 620–628. Ecker, U. K., Lewandowsky, S., Oberauer, K., & Chee, A. E. (2010). The components of working memory updating: an experimental decomposition and individual differences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 170–189. Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Zeitschrift für Psychologie/Journal of Psychology, 217, 108–124. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. Evans, N. J., & Brown, S. D. (2018). Bayes factors for the linear ballistic accumulator model of decision-making. Behavior research methods, 50, 589–603. Figueroa, I. J. & Youmans, R. J. (2012). Individual differences in cognitive flexibility predict performance in vigilance tasks. In Proceedings of the human factors and ergonomics society annual meeting, volume 56 (pp. 1099–1103).: SAGE Publications Sage CA: Los Angeles, CA. Guastello, S. J., Reiter, K., Malon, M., Timm, P., Shircel, A., & Shaline, J. (2015). Catastrophe models for cognitive workload and fatigue in N-back tasks. Nonlinear Dynamics, Psychology, and Life Sciences, 19, 173–200. Harbison, J., Atkins, S. M., & Dougherty, M. R. (2011). N-back training task performance: Analysis and model. In L. Carlson, C. Hölscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 120–125). Austin, TX: Cognitive Science Society. Harvey, P.-O., et al. (2005). Cognitive control and brain resources in major depression: An fMRI study using the n-back task. Neuroimage, 26, 860–869. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 6829–6833. Jordan, M. I. (2004). Graphical models. Statistical Science, 19, 140–155. Juvina, I. & Taatgen, N. A. (2007). Modeling control strategies in the n-back task. In Proceedings of the 8th International Conference on Cognitive Modeling (pp. 73–78).: Psychology Press New York. NY. Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352. Klauer, K. C., & Kellen, D. (2018). RT-MPTs: Process models for response-time distributions based on multinomial processing trees with applications to recognition memory. Journal of Mathematical Psychology, 82, 111–130. Koller, D., Friedman, N., Getoor, L., & Taskar, B. (2007). Graphical models in a nutshell. In L. Getoor & B. Taskar (Eds.), Introduction to Statistical Relational Learning. Cambridge, MA: MIT Press. Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience. Volume 5: Methodology chapter 2, (pp. 37–84). John Wiley & Sons, fourth edition. Lee, M. D., Gluck, K. A., & Walsh, M. M. (2019). Understanding the complexity of simple decisions: Modeling multiple behaviors and switching strategies. Decision, 6, 335–368. Lee, M. D. & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. Li, G., Chen, Y., Le, T. M., Wang, W., Tang, X., & Li, C.-S.R. (2021). Neural correlates of individual variation in two-back working memory and the relationship with fluid intelligence. Scientific reports, 11, 1–13. Mackworth, J. F. (1959). Paced memorizing in a continuous task. Journal of Experimental Psychology, 58, 206. Matzke, D., Ly, A., Selker, R., Weeda, W. D., Scheibehenne, B., Lee, M. D., & Wagenmakers, E.-J. (2017). Bayesian inference for correlations in the presence of measurement error and estimation uncertainty. Collabra: Psychology, 3, 25. Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H., & Gur, R. C. (2015). Psychometric properties of the Penn Computerized Neurocognitive Battery. Neuropsychology, 29, 235. Myung, J. I., Cavagnaro, D. R., & Pitt, M. A. (2013). A tutorial on adaptive design optimization. Journal of Mathematical Psychology, 57, 53–67. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59. Patterson, F., et al. (2009). Varenicline improves mood and cognition during smoking abstinence. Biological Psychiatry, 65, 144–149. Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Rac-Lubashevsky, R., & Kessler, Y. (2016). Decomposing the n-back task: An individual differences study using the reference-back paradigm. Neuropsychologia, 90, 190–199. Ranganath, C. (2010). Binding items and contexts: The cognitive neuroscience of episodic memory. Current Directions in Psychological Science, 19, 131–137. Raven, J. (1989). The Raven Progressive Matrices: A review of national norming studies and ethnic and socioeconomic variation within the United States. Journal of Educational Measurement, 26, 1–16. Schmiedek, F., Li, S.-C., & Lindenberger, U. (2009). Interference and facilitation in spatial working memory: Age-associated differences in lure effects in the n-back paradigm. Psychology and Aging, 24, 203. Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33, 643–653. Stelter, M., & Degner, J. (2018). Investigating the other-race effect in working memory. British Journal of Psychology, 109, 777–798. Sylvester, J., Reggia, J., Weems, S., & Bunting, M. (2013). Controlling working memory with learned instructions. Neural Networks, 41, 23–38. Turner, B. M., Forstmann, B. U., spsampsps Steyvers, M. (2019). A tutorial on joint modeling. Joint Models of Neural and Behavioral Data, (pp. 13–37). Van Essen, D. C., et al. (2013). The WU-Minn human connectome project: an overview. Neuroimage, 80, 62–79. Weintraub, S., et al. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80, S54–S64. Wetzels, R., Grasman, R. P. P. P., & Wagenmakers, E. (2010). An encompassing prior generalization of the Savage-Dickey density ratio test. Computational Statistics and Data Analysis, 54, 2094–2102. Zeigenfuse, M. D., & Lee, M. D. (2010). A general latent assignment approach for modeling psychological contaminants. Journal of Mathematical Psychology, 54, 352–362.