A Multi-physics Methodology for Four States of Matter

Louisa Michael1, Stephen T. Millmore1, Nikolaos Nikiforakis1
1Laboratory for Scientific Computing, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK

Tóm tắt

We propose a numerical methodology for the simultaneous numerical simulation of four states of matter: gas, liquid, elastoplastic solids, and plasma. The distinct, interacting physical processes are described by a combination of compressible, inert, and reactive forms of the Euler equations, multi-phase equations, elastoplastic equations, and resistive MHD equations. Combinations of systems of equations are usually solved by coupling finite element for solid modelling and CFD models for fluid modelling or including material effects through boundary conditions rather than full material discretisation. Our simultaneous solution methodology lies on the recasting of all the equations in the same, hyperbolic form allowing their solution on the same grid with the same finite volume numerical schemes. We use a combination of sharp- and diffuse-interface methods to track or capture material interfaces, depending on the application. The communication between the distinct systems of equations (i.e., materials separated by sharp interfaces) is facilitated by means of mixed-material Riemann solvers at the boundaries of the systems, which represent physical material boundaries. To this end, we derive approximate mixed-material Riemann solvers for each pair of the above models based on characteristic equations. To demonstrate the applicability of the new methodology, we consider a case study, where we investigate the possibility of ignition of a combustible gas that lies over a liquid in a metal container that is struck by a plasma arc akin to a lightning strike. We study the effect of the metal container material and its conductivity on the ignition of the combustible gas, as well as the effects of an additional dielectric coating, the sensitivity of the gas, and differences between scenarios with sealed and pre-damaged metal surfaces.

Tài liệu tham khảo

Abdelal, G., Murphy, A.: Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos. Struct. 109, 268–278 (2014) Aircraft Lightning Environment and Related Test Waveforms. SAE International (2013) Aleksandrov, N., Bazelyan, E., Shneider, M.: Effect of continuous current during pauses between successive strokes on the decay of the lightning channel. Plasma Phys. Rep. 26(10), 893–901 (2000) Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986) Banks, J., Schwendeman, D., Kapila, A., Henshaw, W.: A high-resolution Godunov method for compressible multi-material flow on overlapping grids. J. Comput. Phys. 223(1), 262–297 (2007) Banks, J., Henshaw, W., Schwendeman, D., Kapila, A.: A study of detonation propagation and diffraction with compliant confinement. Combust. Theor. Model. 12(4), 769–808 (2008) Barton, P.T., Drikakis, D., Romenski, E., Titarev, V.A.: Exact and approximate solutions of Riemann problems in non-linear elasticity. J. Comput. Phys. 228(18), 7046–7068 (2009) Barton, P.T., Drikakis, D., Romenski, E.: An Eulerian finite volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Meth. Eng. 81(4), 453–484 (2010) Barton, P.T., Obadia, B., Drikakis, D.: A conservative level-set based method for compressible solid/fluid problems on fixed grids. J. Comput. Phys. 230(21), 7867–7890 (2011) Chemartin, L., Lalande, P., Peyrou, B., Chazottes, A., Elias, P., Delalondre, C., Cheron, B., Lago, F.: Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints. AerospaceLab 5, 1–15 (2012) Chemartin, L.: Modélisation des arcs électriques dans le contexte du foudroiement des aéronefs, Ph.D. thesis, Rouen (2008) Chemartin, L., Lalande, P., Montreuil, E., Delalondre, C., Cheron, B., Lago, F.: Three dimensional simulation of a DC free burning arc. Application to lightning physics. Atmos. Res. 91(2/3/4), 371–380 (2009) Chemartin, L., Lalande, P., Delalondre, C., Cheron, B., Lago, F.: Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes. J. Phys. D Appl. Phys. 44(19), 194003 (2011) D’angola, A., Colonna, G., Gorse, C., Capitelli, M.: Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur. Phys. J. D 46(1), 129–150 (2008) De Brauer, A., Iollo, A., Milcent, T.: A cartesian scheme for compressible multimaterial hyperelastic models with plasticity. Commun. Comput. Phys. 22(5), 1362–1384 (2017) Favrie, N., Gavrilyuk, S.L.: Diffuse interface model for compressible fluid-compressible elastic–plastic solid interaction. J. Comput. Phys. 231(7), 2695–2723 (2012) Favrie, N., Gavrilyuk, S.L., Saurel, R.: Solid–fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228(16), 6037–6077 (2009) Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999) Foster, P., Abdelal, G., Murphy, A.: Understanding how arc attachment behaviour influences the prediction of composite specimen thermal loading during an artificial lightning strike test. Compos. Struct. 192, 671–683 (2018) Gavrilyuk, S.L., Favrie, N., Saurel, R.: Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227(5), 2941–2969 (2008) Godunov, S., Romenskii, E.: Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. J. Appl. Mech. Tech. Phys. 13(6), 868–884 (1972) Godunov, S.K., Romenskii, E.: Elements of Continuum Mechanics and Conservation Laws. Springer, Berlin (2013) Guo, Y., Dong, Q., Chen, J., Yao, X., Yi, X., Jia, Y.: Comparison between temperature and pyrolysis dependent models to evaluate the lightning strike damage of carbon fiber composite laminates. Compos. A Appl. Sci. Manuf. 97, 10–18 (2017) Kapila, A., Menikoff, R., Bdzil, J., Son, S., Stewart, D.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001) Karch, C., Honke, R., Steinwandel, J., Dittrich, K.: Contributions of lightning current pulses to mechanical damage of CFRP structures. In: 2015 International Conference on Lightning and Static Electricity. Institution of Engineering and Technology (IET) (2015) Kondaurov, V.: Equations of elastoviscoplastic medium with finite deformations. J. Appl. Mech. Tech. Phys. 23(4), 584–591 (1982) Lago, F.: Modélisation de l’interaction entre un arc électrique et une surface: application au foudroiement d’un aéronef, Ph.D. thesis, Toulouse 3 (2004) Langtangen, H.P., Logg, A.: Solving PDEs in Minutes–the FEniCS Tutorial. Volume i. Springer (2016) Larsson, A., Lalande, P., Bondiou-Clergerie, A., Delannoy, A.: The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels. J. Phys. D Appl. Phys. 33(15), 1866 (2000) Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. ACM Trans. Graph. 25, 3 (2019) Michael, L., Millmore, S., Nikiforakis, N.: Numerical modelling of plasma arc initiated detonations. In: 16th Int. Detonation Symp (2018) Michael, L., Nikiforakis, N.: A hybrid formulation for the numerical simulation of condensed phase explosives. J. Comput. Phys. 316, 193–217 (2016) Michael, L., Nikiforakis, N.: A multi-physics methodology for the simulation of reactive flow and elastoplastic structural response. J. Comput. Phys. 367, 1–27 (2018) Miller, G.H.: An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics. J. Comput. Phys. 193(1), 198–225 (2004) Miller, G., Colella, P.: A high-order Eulerian godunov method for elastic–plastic flow in solids. J. Comput. Phys. 167(1), 131–176 (2001) Miller, G., Colella, P.: A conservative three-dimensional Eulerian method for coupled solid–fluid shock capturing. J. Comput. Phys. 183(1), 26–82 (2002) Millmore, S.T., Nikiforakis, N.: Multi-physics simulations of lightning strike an elastoplastic substrates, Submitted Monasse, L.: Analysis of a coupling method between a compressible fluid and a deformable structure, Theses, Université Paris-Est (2011) Mottura, L., Vigevano, L., Zaccanti, M.: An evaluation of Roe’s scheme generalizations for equilibrium real gas flows. J. Comput. Phys. 138(2), 354–399 (1997) Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202(2), 664–698 (2005) Ogasawara, T., Hirano, Y., Yoshimura, A.: Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos. A Appl. Sci. Manuf. 41(8), 973–981 (2010) Paxton, A., Gardner, R., Baker, L.: Lightning return stroke. A numerical calculation of the optical radiation. Phys. Fluids 29(8), 2736–2741 (1986) Plohr, B.J., Sharp, D.H.: A conservative Eulerian formulation of the equations for elastic flow. Adv. Appl. Math. 9(4), 481–499 (1988) Plooster, M .N.: Shock waves from line sources. Numerical solutions and experimental measurements. Phys. Fluids 13(11), 2665–2675 (1970) Plooster, M.N.: Numerical model of the return stroke of the lightning discharge. Phys. Fluids 14(10), 2124–2133 (1971) Plooster, M.N.: Numerical simulation of spark discharges in air. Phys. Fluids 14(10), 2111–2123 (1971) Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19(6), 433–455 (1971) Sambasivan, S.K., Udaykumar, H.: Ghost fluid method for strong shock interactions. Part 1: fluid–fluid interfaces. Aiaa J. 47(12), 2907–2922 (2009) Sambasivan, S.K., Udaykumar, H.: Ghost fluid method for strong shock interactions part 2: immersed solid boundaries. Aiaa J. 47(12), 2923–2937 (2009) Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999) Schoch, S., Nordin-Bates, K., Nikiforakis, N.: An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives. J. Comput. Phys. 252, 163–194 (2013) Schoch, S., Nikiforakis, N., Lee, B.J.: The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials. Phys. Fluids 25(8), 086102 (2013) Schwendeman, D.W., Kapila, A.K., Henshaw, W.D.: A hybrid two-phase mixture model of detonation diffraction with compliant confinement. Comptes Rendus Mécanique 340(11/12), 804–817 (2012) Shyue, K.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998) Shyue, K.: A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156(1), 43–88 (1999) Shyue, K.: A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. J. Comput. Phys. 171(2), 678–707 (2001) Tanaka, Y., Michishita, T., Uesugi, Y.: Hydrodynamic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure. Plasma Sources Sci. Technol. 14(1), 134 (2005) Tholin, F., Chemartin, L., Lalande, P.: Numerical investigation of the interaction of a lightning and an aeronautic skin during the pulsed arc phase. In: 2015 International Conference on Lightning and Static Electricity. Institution of Engineering and Technology (IET) (2015) Titarev, V., Romenski, E., Toro, E.: MUSTA-type upwind fluxes for non-linear elasticity. Int. J. Numer. Meth. Eng. 73(7), 897–926 (2008) Träuble, F.J..: Multi-physics modelling of solid-plasma interaction (2018) Villa, A., Malgesini, R., Barbieri, L.: A multiscale technique for the validation of a numerical code for predicting the pressure field induced by a high-power spark. J. Phys. D Appl. Phys. 44(16), 165201 (2011) Wang, S., Anderson, M., Oakley, J., Corradini, M., Bonazza, R.: A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows. J. Comput. Phys. 195(2), 528–559 (2004)