A Moser–Trudinger type inequality on the Orlicz fractional space
Tóm tắt
We prove the existence of a weak solution to the perturbed fractional Kirchhoff problem with a singular exponential nonlinearity that includes the fractional
$$\varphi$$
-laplacian operator. Our main results are obtained using Ekeland’s variational principle and the mountain pass theorem. To this end, we shall prove a Trudinger–Moser inequality.
Tài liệu tham khảo
Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. AMS 51(11), 1336–1347 (2004)
Caffarelli, L.: Non-local diffusions, drifts and games. In: Carles Casacuberta (Ed) Nonlinear Partial Differential Equations, pp. 37–52. Springer (2012)
Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance: Stochastic Modeling. Routledge, New York (2017)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)
Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker\(^{\prime }s\) guide to the fractional Sobolev spaces. Bulletin des sciences mathématiques 136(5), 521–573 (2012)
Iannizzotto, A., Squassina, M.: 12-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414(1), 372–385 (2014)
Miyagaki, O.H., Squassina, M., et al.: Ground states of nonlocal scalar field equations with Trudinger–Moser critical nonlinearity. Topol. Methods Nonlinear Anal. 48(2), 477–492 (2016)
Giacomoni, J., Mishra, P.K., Sreenadh, K.: Fractional elliptic equations with critical exponential nonlinearity. Adv. Nonlinear Anal. 5(1), 57–74 (2016)
Kanishka, P., Squassina, M.: Bifurcation results for problems with fractional Trudinger–Moser nonlinearity. arXiv preprint arXiv:1704.00128 (2017)
Brasco, L., Parini, E.: The second eigenvalue of the fractional p-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)
Franzina, G., Palatucci, G.: Fractional p-eigenvalues. arXiv preprint arXiv:1307.1789 (2013)
Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A Math. 144(4), 831–855 (2014)
Bisci, G.M., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, vol. 162. Cambridge University Press, Cambridge (2016)
De Souza, M.: On a class of nonhomogeneous fractional quasilinear equations in \({R}^{n}\) with exponential growth. Nonlinear Differ. Equ. Appl. 22(4), 499–511 (2015)
Li, Q., Yang, Z.: Multiple solutions for n-Kirchhoff type problems with critical exponential growth in \(\mathbb{R} ^{N}\). Nonlinear Anal. Theory Methods Appl. 117, 159–168 (2015)
Li, Q., Yang, Z.: Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in \(\mathbb{R} ^{N}\). Complex Var. Elliptic Equ. 61(7), 969–983 (2016)
Mingqi, X., Rădulescu, V.D., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger–Moser nonlinearity. Calc. Var. Partial. Differ. Equ. 58(2), 1–27 (2019)
Mingqi, X., Rădulescu, V.D., Zhang, B.: Nonlocal Kirchhoff problems with singular exponential nonlinearity. Appl. Math. Optim. 84(1), 915–954 (2021)
Trudinger, N.S.: On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17(5), 473–483 (1967)
Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20(11), 1077–1092 (1971)
Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29(1), 295–322 (2005). https://doi.org/10.1081/PDE-120028854
Sandeep, K., et al.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13(5), 585–603 (2007)
Csató, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains. Commun. Partial Differ. Equ. 41(5), 838–847 (2016)
Csató, G., Nguyen, V.H., Roy, P.: Extremals for the singular Moser–Trudinger inequality via n-harmonic transplantation. J. Differ. Equ. 270, 843–882 (2021). https://doi.org/10.1016/j.jde.2020.08.005
Battaglia, L., Mancini, G.: Remarks on the Moser–Trudinger inequality. Adv. Nonlinear Anal. 2(4), 389–425 (2013)
Parini, E., Ruf, B.: On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces. Journal d’Analyse Mathématique 138(1), 281–300 (2019)
Černỳ, R.: Generalized Moser–Trudinger inequality for unbounded domains and its application. Nonlinear Differ. Equ. Appl. 19(5), 575–608 (2012)
Martinazzi, L.: Fractional Adams–Moser–Trudinger type inequalities. Nonlinear Anal. Theory Methods Appl. 127, 263–278 (2015)
Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55(6), 1951–1974 (2006)
Ozawa, T.: On critical cases of Sobolev inequalities. Hokkaido Univ. Prepr. Ser. Math. 154, 1–11 (1992)
Piersanti, P., Pucci, P.: Entire solutions for critical \(p\)-fractional hardy Schrödinger Kirchhoff equations. Publicacions Matemàtiques 62(1), 3–36 (2018)
Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \(\mathbb{R} ^{N}\) involving nonlocal operators. Revista Matematica Iberoamericana 32(1), 1–22 (2016)
Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J. Math. Anal. Appl. 424(2), 1021–1041 (2015)
Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)
Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations. Annali di Matematica Pura ed Applicata (1923-) 195, 2099–2129 (2016)
Xiang, M., Zhang, B., Rădulescu, V.D.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. Nonlinearity 29(10), 3186 (2016)
D’ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108(1), 247–262 (1992)
Bahrouni, S., Ounaies, H., Tavares, L.S., et al.: Basic results of fractional Orlicz–Sobolev space and applications to non-local problems. Topol. Methods Nonlinear Anal. 55(2), 681–695 (2020)
Bahrouni, S., Salort, A.M.: Neumann and robin type boundary conditions in fractional Orlicz–Sobolev spaces. ESAIM Control Optim. Calc. Var. 27, 15 (2021)
Kufner, A., John, O., Fucik, S.: Function Spaces, vol. 3. Springer, Berlin (1977)
Chen, S.: Dissertationes mathematicae (rozprawy matematyczne). Instytut Matematyczny PAN, Warszawa (1996)
Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces, vol. 250. CRC Press, Boca Raton (2002)
Bonder, J.F., Salort, A.M.: Fractional order Orlicz–Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)
Bahrouni, A., Missaoui, H., Ounaies, H.: Least-energy nodal solutions of nonlinear equations with fractional Orlicz–Sobolev spaces. arXiv preprint arXiv:2105.03368 (2021)
Azroul, E., Benkirane, A., Srati, M.: Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. Adv. Oper. Theory 5(4), 1350–1375 (2020)
Salort, A.M.: Eigenvalues and minimizers for a non-standard growth non-local operator. J. Differ. Equ. 268(9), 5413–5439 (2020)
Rabinowitz, P.H., et al.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65. American Mathematical Society, Providence (1986)
Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Fractional orlicz-sobolev embeddings. Journal de Mathématiques Pures et Appliquées 149, 216–253 (2021)