A Montel Type Result for Super-Polyharmonic Functions on R N

Springer Science and Business Media LLC - Tập 34 - Trang 89-100 - 2010
Toshihide Futamura1, Keiji Kitaura2, Yoshihiro Mizuta3
1Department of Mathematics, Daido University, Nagoya, Japan
2Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
3Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Japan

Tóm tắt

Our aim in this paper is to discuss a Montel type result for a family ${\mathcal F}$ of super-polyharmonic functions on R N . We give a condition on spherical means to assure that ${\mathcal F}$ contains a sequence converging outside a set of capacity zero.

Tài liệu tham khảo

Abkar, A., Hedenmalm, H.: A Riesz representation formula for super-biharmonic functions. Ann. Acad. Sci. Fenn., Math. 26, 305–324 (2001) Anderson, M., Baernstein, A.: The size of the set on which a meromorphic function is large. Proc. Lond. Math. Soc. 36, 518–539 (1978) Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon Press (1983) Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001) Futamura, T., Kitaura, K., Mizuta, Y.: Isolated singularities, growth of spherical means and Riesz decomposition for superbiharmonic functions. Hiroshima Math. J. 38, 231–241 (2008) Futamura, T., Mizuta, Y.: Isolated singularities of super-polyharmonic functions. Hokkaido Math. J. 33, 675–695 (2004) Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976) Hayman, W.K., Korenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. Anal. Math. 60, 113–133 (1993) Kitaura, K., Mizuta, Y.: Spherical means and Riesz decomposition for superbiharmonic functions. J. Math.Soc. Jpn. 58, 521–533 (2006) Kondratyuk, A.A., Tarasyuk, S.I.: Compact Operators and Normal Families of Subharmonic Functions. Function Spaces, Differential Operators and Nonlinear Analysis (Paseky nad Jizerou, 1995), pp. 227–231 . Prometheus, Prague (1996) Landkof, N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg (1972) Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995) Mizuta, Y.: An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures. Hiroshima Math. J. 27, 415–427 (1997) Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakkōtosyo, Tokyo (1996) Pizetti, P.: Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera. Rend. Lincei 5, 309–316 (1909) Schiff, J.L.: Normal Families. Springer, New York (1993) Supper, R.: Subharmonic functions of order less than one, Potential Anal. 23, 165–179 (2005) Supper, R.: A Montel type result for subharmonic functions. Boll. Unione Mat. Ital. 2, 423–444 (2009)