A Montel Type Result for Super-Polyharmonic Functions on R N
Tóm tắt
Our aim in this paper is to discuss a Montel type result for a family
${\mathcal F}$
of super-polyharmonic functions on R
N
. We give a condition on spherical means to assure that
${\mathcal F}$
contains a sequence converging outside a set of capacity zero.
Tài liệu tham khảo
Abkar, A., Hedenmalm, H.: A Riesz representation formula for super-biharmonic functions. Ann. Acad. Sci. Fenn., Math. 26, 305–324 (2001)
Anderson, M., Baernstein, A.: The size of the set on which a meromorphic function is large. Proc. Lond. Math. Soc. 36, 518–539 (1978)
Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon Press (1983)
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)
Futamura, T., Kitaura, K., Mizuta, Y.: Isolated singularities, growth of spherical means and Riesz decomposition for superbiharmonic functions. Hiroshima Math. J. 38, 231–241 (2008)
Futamura, T., Mizuta, Y.: Isolated singularities of super-polyharmonic functions. Hokkaido Math. J. 33, 675–695 (2004)
Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)
Hayman, W.K., Korenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. Anal. Math. 60, 113–133 (1993)
Kitaura, K., Mizuta, Y.: Spherical means and Riesz decomposition for superbiharmonic functions. J. Math.Soc. Jpn. 58, 521–533 (2006)
Kondratyuk, A.A., Tarasyuk, S.I.: Compact Operators and Normal Families of Subharmonic Functions. Function Spaces, Differential Operators and Nonlinear Analysis (Paseky nad Jizerou, 1995), pp. 227–231 . Prometheus, Prague (1996)
Landkof, N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg (1972)
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)
Mizuta, Y.: An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures. Hiroshima Math. J. 27, 415–427 (1997)
Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakkōtosyo, Tokyo (1996)
Pizetti, P.: Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera. Rend. Lincei 5, 309–316 (1909)
Schiff, J.L.: Normal Families. Springer, New York (1993)
Supper, R.: Subharmonic functions of order less than one, Potential Anal. 23, 165–179 (2005)
Supper, R.: A Montel type result for subharmonic functions. Boll. Unione Mat. Ital. 2, 423–444 (2009)