A Microsatellite Linkage Map of Striped Bass (Morone saxatilis) Reveals Conserved Synteny with the Three-Spined Stickleback (Gasterosteus aculeatus)

Springer Science and Business Media LLC - Tập 14 - Trang 237-244 - 2011
Sixin Liu1, Caird E. Rexroad1, Charlene R. Couch2, Jan F. Cordes3, Kimberly S. Reece3, Craig V. Sullivan4
1USDA/ARS National Center of Cool and Cold Water Aquaculture, Kearneysville, USA
2Department of Genetics, North Carolina State University, Raleigh, USA
3Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, Gloucester Point, USA
4Department of Biology, North Carolina State University, Raleigh, USA

Tóm tắt

The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetics technologies in striped bass breeding programs, we previously developed nearly 500 microsatellite markers. The objectives of this study were to construct a microsatellite linkage map of striped bass and to examine conserved synteny between striped bass and three-spined stickleback (Gasterosteus aculeatus). Of 480 microsatellite markers screened for polymorphism, 289 informative markers were identified and used to genotype two half-sib mapping families. Twenty-six linkage groups were assembled, and only two markers remain unlinked. The sex-averaged map spans 1,623.8 cM with an average marker density of 5.78 cM per marker. Among 287 striped bass microsatellite markers assigned to linkage groups, 169 (58.9%) showed homology to sequences on stickleback chromosomes or scaffolds. Comparison between the stickleback genome and the striped bass linkage map revealed conserved synteny between these two species. This is the first linkage map for any of the Morone species. This map will be useful for molecular mapping and marker-assisted selection of genes of interest in striped bass breeding programs. The conserved synteny between striped bass and stickleback will facilitate fine mapping of genome regions of interest and will serve as a new resource for comparative mapping with other Perciform fishes such as European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and tilapia (Oreochromis ssp.).

Tài liệu tham khảo