A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A. Jr., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M.: Abrupt climate change. Science 299, 2005–2010 (2003)
Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamical Systems. Wiley, New York (1973)
Arnold, L.: Random dynamical systems. In: Dynamical Systems (Montecatini Terme, 1994), pp. 1–43. Springer, Berlin (1995)
Arnold, L.: Random Dynamical Systems. Springer, Berlin (2003)
Arnold, V.I.: Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, Berlin (1994)
Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. A 370, 1166–1184 (2012)
Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)
Bazykin, A.D.: In: Khibnik, A.I., Krauskopf, B. (eds.) Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)
Bender, C.M., Orszag, S.A.: Asymptotic Methods and Perturbation Theory. Springer, Berlin (1999)
Berglund, N., Gentz, B.: The effect of additive noise on dynamical hysteresis. Nonlinearity 15, 605–632 (2002a)
Berglund, N., Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 2, 327–356 (2002b)
Berglund, N., Gentz, B.: Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields 3, 341–388 (2002c)
Berglund, N., Gentz, B.: Geometric singular perturbation theory for stochastic differential equations. J. Differ. Equ. 191, 1–54 (2003)
Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit I: two-level model. J. Stat. Phys. 114(5), 1577–1618 (2004)
Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow-Fast Dynamical Systems. Springer, Berlin (2006)
Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit II: the general case (2012). arXiv:1208.2557
Berglund, N., Landon, D.: Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model. Nonlinearity 25, 2303–2335 (2012)
Berglund, N., Gentz, B., Kuehn, C.: Hunting French ducks in a noisy environment. J. Differ. Equ. 252(9), 4786–4841 (2012)
Boettinger, C., Hastings, A.: Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9(75), 2527–2539 (2012)
Brackley, C.A., Ebenhöh, O., Grebogi, C., Kurths, J., de Moura, A., Romano, M.C., Thiel, M.: Introduction to focus issue: dynamics in systems biology. Chaos 20, 045101 (2010)
Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J. Differ. Equ., 1–46 (2012, submitted). Preprint
Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006)
Carpenter, S.R., Brock, W.A., Cole, J.J., Kitchell, J.F., Place, M.L.: Leading indicators of trophic cascades. Ecol. Lett. 11, 128–138 (2008)
Cessi, P.: A simple box model of stochastically forced thermohaline circulation. J. Phys. Oceanogr. 24, 1911–1920 (1994)
Chiba, H.: Periodic orbits and chaos in fast-slow systems with Bogdanov–Takens type fold points. J. Differ. Equ. 250, 112–160 (2011)
Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M., Pielke, R. Jr., Pizer, W., Pringle, C., Reid, W.V., Rose, K.A., Sala, O., Schlesinger, W.H., Wall, D.H., Wear, D.: Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001)
Dakos, V., Scheffer, M., van Nes, E.H., Brovkin, V., Petoukhov, V., Held, H.: Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA 105(38), 14308–14312 (2008)
Dakos, V., van Nes, E.H., Donangelo, R., Fort, H., Scheffer, M.: Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3(3), 163–174 (2009)
Dakos, V., Kéfi, M., Rietkerk, M., van Nes, E.H., Scheffer, M.: Slowing down in spatially patterned systems at the brink of collapse. Am. Nat. 177(6), 153–166 (2011)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Desroches, M., Guckenheimer, J., Kuehn, C., Krauskopf, B., Osinga, H., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)
Ditlevsen, P.D., Johnsen, S.J.: Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, 19703 (2010)
Donangelo, R., Fort, H., Dakos, V., Scheffer, M., Van Nes, E.H.: Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bifurc. Chaos 20(2), 315–321 (2010)
Drake, J.M., Griffen, B.D.: Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010)
Elger, C.E., Lehnertz, K.: Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998)
Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
Gardiner, C.: Stochastic Methods, 4th edn. Springer, Berlin (2009)
Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844 (1981)
Govaerts, W., Kuznetsov, Yu.A.: Matcont (2010). http://www.matcont.ugent.be/
Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, Berlin (1987)
Gross, T., Sayama, H. (eds.): Adaptive Networks: Theory, Models and Applications. Springer, Berlin (2009)
Gross, T., Dommar D’Lima, C.J., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)
Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)
Hale, J.K.: Ordinary Differential Equations. Dover, New York (2009)
Hallerberg, S., Kantz, H.: Influence of the event magnitude on the predictability of extreme events. Phys. Rev. E 77, 011108 (2008)
Hastings, A., Wysham, D.B.: Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010)
Highham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)
Hong, H., Stein, J.C.: Differences of opinion, short-sales constraints, and market crashes. Rev. Financ. Stud. 16(2), 487–525 (2003)
Imkeller, P., Pavlyukevich, I.: First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Appl. 116(4), 611–642 (2006)
Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)
Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994). Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995)
Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. B 264(1385), 1149–1156 (1997)
Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001a)
Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001b)
Krupa, M., Szmolyan, P.: Geometric analysis of the singularly perturbed fold. In: Multiple-Time-Scale Dynamical Systems. IMA, vol. 122, pp. 89–116 (2001c)
Krupa, M., Popovic, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7(2), 361–420 (2008)
Kuehn, C.: A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12), 1020–1035 (2011)
Kuehn, C.: Time-scale and noise optimality in self-organized critical adaptive networks. Phys. Rev. E 85(2), 026103-7 (2012)
Kuehn, C., Zschaler, G., Gross, T.: Early warning signs for critical saddle-escape in complex systems. Preprint (2012)
Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105(6), 1786–1793 (2008)
Lindner, B., Schimansky-Geier, L.: Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys. Rev. E 60(6), 7270–7276 (1999)
Meisel, C., Kuehn, C.: On spatial and temporal multilevel dynamics and scaling effects in epileptic seizures. PLoS ONE 7(2), 1–11 (2012) (e30371)
Mishchenko, E.F., Rozov, N.Kh.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum, New York (1980) (translated from Russian)
Mishchenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh.: Asymptotic Methods in Singularly Perturbed Systems. Plenum, New York (1994)
Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)
Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)
Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. I. Differ. Equ. Transl. 23, 1385–1391 (1987)
Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. II. Differ. Equ. Transl. 24, 171–176 (1988)
Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell division cycle of fission yeast. Chaos 11(1), 277–286 (2001)
Rinzel, J.: A formal classification of bursting mechanisms in excitable systems. In: Proc. Int. Congress Math., Berkeley, pp. 1578–1593 (1986)
Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)
Scheffer, M., Carpenter, S.R.: Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18(12), 648–656 (2003)
Scheffer, M., Bascompte, J., Brock, W.A., Brovkhin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)
Su, J., Rubin, J., Terman, D.: Effects of noise on elliptic bursters. Nonlinearity 17, 133–157 (2004)
Thompson, J.M.T., Sieber, J.: Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math. 76(1), 27–46 (2011)
Touboul, J., Wainrib, G.: Bifurcations of stochastic differential equations with singular diffusion coefficients, pp. 1–39 (2012). arXiv:1205.0172v1
Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. In: Current Opinion in Cell Biology, vol. 15, pp. 221–231 (2003)
van Gils, S., Krupa, M., Langford, W.F.: Hopf bifurcation with non-semisimple 1:1 resonance. Nonlinearity 3, 825–850 (1990)
van Nes, E.H., Scheffer, M.: Slow recovery from perturbations as generic indicator of a nearby catastrophic shift. Am. Nat. 169(6), 738–747 (2007)
Venegas, J.G., Winkler, T., Musch, G., Vidal Melo, M.F., Layfield, D., Tgavalekos, N., Fischman, A.J., Callahan, R.J., Bellani, G., Harris, R.S.: Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777–782 (2005)
Venkadesan, M., Guckenheimer, J., Valero-Cuevas, F.J.: Manipulating the edge of instability. J. Biomech. 40, 1653–1661 (2007)
Veraart, A.J., Faassen, E.J., Dakos, V., van Nes, E.H., Lurling, M., Scheffer, M.: Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012)
Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)
Wolfram Research Inc.: Mathematica Edition: Version 8.0 (2010). Wolfram Research, Inc.