A Markovian random walk model of epidemic spreading

Continuum Mechanics and Thermodynamics - Tập 33 - Trang 1207-1221 - 2021
Michael Bestehorn1, Alejandro P. Riascos2, Thomas M. Michelitsch3, Bernard A. Collet3
1Institut für Physik, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
2Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
3Institut Jean le Rond d’Alembert, Sorbonne Université, CNRS UMR 7190, Paris, France

Tóm tắt

We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time Markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then, we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node, there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations, we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.

Tài liệu tham khảo

Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010) Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016) Hughes, B.D.: Random Walks and Random Environments: Vol. 1: Random Walks (Oxford University Press, USA, 1996) Riascos, A.P., Mateos, J.L.: Emergence of encounter networks due to human mobility. Plos One 12(10), e0184532 (2017). https://doi.org/10.1371/journal.pone.0184532 Metzler, R., Klafter, J.: The random Walk’s guide to anomalous diffusion : a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer (2015). ISBN 978-1-4899-7612-3 Belik, V., Geisel, T., Brockmann, D.: Recurrent host mobility in spatial epidemics: beyond reaction-diffusion. Eur. Phys. J. B 84, 579–587 (2011). https://doi.org/10.1140/epjb/e2011-20485-2 Feng, L., Zhao, Q., Zhou, C.: Epidemic spreading in heterogeneous networks with recurrent mobility patterns. Phys. Rev. E 102, 022306 (2020). https://doi.org/10.1103/PhysRevE.102.022306 Pastor-Satorras, R.A., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001) Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001) Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015) Pastor-Satorras, R., Vespignani, A.: Epidemics and immunization in scale-free networks. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of graph and networks. Wiley-VCH, Berlin (2003) Mancastroppa, M., Burioni, R., Colizza, V., Vezzani, A.: Active and inactive quarantine in epidemic spreading on adaptive activity-driven networks. Phys. Rev. E 102, 020301(R) (2020). https://doi.org/10.1103/PhysRevE.63.066117 Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000) Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60, 7332–7342 (1999) Cacciapaglia, G., Sannino, F.: Second wave COVID-19 pandemics in Europe: a temporal playbook. Sci. Rep. 10, 15514 (2020). https://doi.org/10.1038/s41598-020-72611-5 Website of the European centre for disease prevention and control. https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A115, 700–721 (1927) Anderson, R.M., May, R.M.: Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979) Riascos, A.P., Sanders, D.P.: Mean encounter times for multiple random walkers on networks, (Submitted), preprint. arXiv:2008.12806 Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001 Holme, P., Modern, P.: temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234 (2015). https://doi.org/10.1140/epjb/e2015-60657-4 Riascos, A.P., Michelitsch, T.M.: A. Pizarro-Medina, Non-local biased random walks and fractional transport on directed networks. Phys. Rev. E 102, 022142 (2020). https://doi.org/10.1103/PhysRevE.102.022142 Michelitsch, T., Riascos, A.P., Collet, B.A., Nowakowski, A., Nicolleau, F.: Fractional Dynamics on Networks and Lattices, ISTE-Wiley March 2019, ISBN : 9781786301581 Michelitsch, T.M., Polito, F., Riascos, A.P.: Biased continuous-time random walks with Mittag-Leffler jumps. Fractal Fract. 4(4), 51 (2020). https://doi.org/10.3390/fractalfract4040051