A Machine Learning Framework for Predicting the Glass Transition Temperature of Homopolymers

American Chemical Society (ACS) - Tập 61 Số 34 - Trang 12690-12698 - 2022
Tung Nguyen1, Mona Bavarian1
1Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharoni S., 1998, Polym. Adv. Technol., 9, 169, 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z

10.1002/app.1969.070131011

10.1103/PhysRevE.63.021501

10.1016/B978-0-323-47358-3.00017-X

John N., 2017, The Chemistry of Polymers, 1, 5

10.1016/j.carbpol.2008.12.027

10.1016/0144-8617(92)90129-E

10.1021/ma9025948

10.1021/ma00104a036

10.1103/PhysRevLett.61.2635

10.1016/j.jmat.2017.08.002

Winston P. H., 1992, Artificial Intelligence, 3

10.1016/S0731-7085(99)00272-1

10.1021/acs.jpclett.5b01660

10.1038/s41524-017-0056-5

10.1016/j.tox.2005.08.019

10.1038/srep20952

10.1002/aic.17674

10.1021/ma011279m

10.2478/s11696-009-0036-4

10.1007/s00396-009-2035-y

Jozef B., 1992, Computational Modeling of Polymers (Plastics Engineering), 1

Jozef B., 2002, Prediction of Polymer Properties, 3

10.1371/journal.pone.0038424

10.1021/ci010062o

10.48550/arXiv.1710.02238

10.48550/arXiv.1706.06689

10.1021/acs.jcim.9b00807

10.48550/arXiv.1908.02398

10.1016/j.polymer.2020.122341

10.1021/acs.jmedchem.9b00959

10.1007/BF02478259

Goodfellow I., 2016, Deep Learning, 1

10.1021/ci500747n

10.1016/j.toxlet.2017.07.175

10.1109/IJCNN.2005.1555942

10.1109/TNN.2008.2005605

2022, Graph Neural Networks: Foundations, Frontiers, and Applications, 1, 1

Vaswani A., 2017, Adv. Neural Inf. Process. Syst.

Bhardwaj A., 2018, Deep Learning Essentials: Your Hands-on Guide to the Fundamentals of Deep Learning and Neural Network Modeling, 1, 1

10.48550/arXiv.1710.10903

Duvenaud D., 2015, Adv. Neural Inf. Process. Syst.

10.48550/arXiv.1505.00853

Gilmer J., 2017, International conference on machine learning

10.1088/2632-2153/abf5b8

10.1093/bib/bbz042

Glass Transition Temperatures. CROW. http://polymerdatabase.com (accessed 2022-02-02).

10.1021/ci00057a005

10.1039/C7SC02664A

10.1021/acs.jcim.9b00237

10.1186/1758-2946-4-22

Landrum G., 2006, Open-Source Cheminformatics and Machine Learning

10.1021/ci00062a008

Provost, F. Machine Learning from Imbalanced Data Sets 101. In Proceedings of the AAAI’2000 workshop on imbalanced data sets; AAAI Press: 2000; pp. 1-3.

10.1109/TVT.2019.2954094

Goldberg D., 1988, Genetic Algorithms in Search, Optimization and Machine Learning, 13

10.3390/en11071636

Auer P., 2002, J. Mach. Learn. Res., 3, 397

10.1109/JPROC.2015.2494218

10.48550/arXiv.1412.6980

10.1109/ICASSP.2019.8683024

10.1109/ACCESS.2019.2963056

10.48550/arXiv.1712.04621

10.1186/s40537-019-0197-0

Papp P. A., 2021, Adv. Neural Inf. Process. Syst., 34, 21997

10.1109/TMI.2016.2528129

10.1016/j.commatsci.2018.03.074

10.1145/2145816.2145819

Bennett K. P., 2006, J. Mach. Learn. Res., 7, 1265

Chollet F., 2021, Deep Learning with Python, Second Edition

10.1016/j.chempr.2020.05.002