A Lyapunov-type inequality for a fractional boundary value problem

Rui A. C. Ferreira1
1Department of Mathematics, Lusophone University of Humanities and Technologies, 1749-024 Lisbon, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, No 2 (2005), 495–505.

R.C. Brown, D.B. Hinton, Lyapunov inequalities and their applications. In: Survey on Classical Inequalities (Ed. T.M. Rassias), Math. Appl. 517, Kluwer Acad. Publ., Dordrecht — London (2000), 1–25.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006).

A. M. Lyapunov, Probleme général de la stabilité du mouvement, (French Transl. of a Russian paper dated 1893). Ann. Fac. Sci. Univ. Toulouse 2 (1907), 27–247; Reprinted in: Ann. Math. Studies, No. 17, Princeton (1947).

A.M. Nahušev, The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms. Dokl. Akad. Nauk SSSR 234, No 2 (1977), 308–311.

A.Yu. Popov, On the number of real eigenvalues of a certain boundaryvalue problem for a second-order equation with fractional derivative. Fundam. Prikl. Mat. 12, No 6 (2006), 137–155; Transl. in J. Math. Sci. (N. York) 151, No 1 (2008), 2726–2740.

M. Rahimy, Applications of fractional differential equations. Appl. Math. Sci. (Ruse) 4, No 49–52 (2010), 2453–2461.

A. Tiryaki, Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 5, No 2 (2010), 231–248.