A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes

Discrete & Computational Geometry - Tập 61 - Trang 541-561 - 2018
Steven Klee1, Eran Nevo2, Isabella Novik3, Hailun Zheng4
1Department of Mathematics, Seattle University, Seattle, USA
2Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
3Department of Mathematics, University of Washington, Seattle, USA
4Department of Mathematics, University of Michigan, Ann Arbor, USA

Tóm tắt

Stanley proved that for any centrally symmetric simplicial d-polytope P with $$d\ge 3$$ , $$g_2(P) \ge {d \atopwithdelims ()2}-d$$ . We provide a characterization of centrally symmetric simplicial d-polytopes with $$d\ge 4$$ that satisfy this inequality as equality. This gives a natural generalization of the classical Lower Bound Theorem for simplicial polytopes to the setting of centrally symmetric simplicial polytopes.

Tài liệu tham khảo

Adin, R.M.: On face numbers of rational simplicial polytopes with symmetry. Adv. Math. 115(2), 269–285 (1995) Altshuler, A., Perles, M.A.: Quotient polytopes of cyclic polytopes. I. Structure and characterization. Isr. J. Math. 36(2), 97–125 (1980) Andrews, G.E.: A theorem on reciprocal polynomials with applications to permutations and compositions. Am. Math. Mon. 82(8), 830–833 (1975) Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978) Asimow, L., Roth, B.: The rigidity of graphs. II. J. Math. Anal. Appl. 68(1), 171–190 (1979) Bagchi, B., Datta, B.: On \(k\)-stellated and \(k\)-stacked spheres. Discrete Math. 313(20), 2318–2329 (2013) Barnette, D.: Graph theorems for manifolds. Isr. J. Math. 16, 62–72 (1973) Barnette, D.: A proof of the lower bound conjecture for convex polytopes. Pac. J. Math. 46, 349–354 (1973) Billera, L., Lee, C.W.: A proof of the sufficiency of McMullen’s conditions for \(f\)-vectors of simplicial convex polytopes. J. Comb. Theory Ser. A 31(3), 237–255 (1981) Fogelsanger, A.L.: The generic rigidity of minimal cycles. Ph.D. thesis, Cornell University (1988). http://www.armadillodanceproject.com/af/cornell/rigidityintro.pdf Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) Jorge, H.A.: Combinatorics of polytopes with a group of linear symmetries of prime power order. Discrete Comput. Geom. 30(4), 529–542 (2003) Kalai, G.: Rigidity and the lower bound theorem. I. Invent. Math. 88(1), 125–151 (1987) Klee, S., Novik, I.: Lower bound theorems and a generalized lower bound conjecture for balanced simplicial complexes. Mathematika 62(2), 441–477 (2016) Lee, C.W.: Generalized stress and motions. In: Bisztriczky, T. (ed.) Polytopes: Abstract, Convex and Computational. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 440, pp. 249–271. Kluwer, Dordrecht (1994) Lee, C.W.: The \(g\)-theorem. (2002). http://www.ms.uky.edu/~lee/ma715sp02/notes.pdf Murai, S.: Tight combinatorial manifolds and graded Betti numbers. Collect. Math. 66(3), 367–386 (2015) Murai, S., Nevo, E.: On the generalized lower bound conjecture for polytopes and spheres. Acta Math. 210(1), 185–202 (2013) Murai, S., Novik, I.: Face numbers and the fundamental group. Isr. J. Math. 222(1), 297–315 (2017) Sanyal, R., Werner, A., Ziegler, G.M.: On Kalai’s conjectures concerning centrally symmetric polytopes. Discrete Comput. Geom. 41(2), 183–198 (2009) Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35(3), 236–238 (1980) Stanley, R.P.: On the number of faces of centrally-symmetric simplicial polytopes. Graphs Comb. 3(1), 55–66 (1987) Stanley, R.P.: Subdivisions and local \(h\)-vectors. J. Am. Math. Soc. 5(4), 805–851 (1992) Swartz, E.: Topological finiteness for edge-vertex enumeration. Adv. Math. 219(5), 1722–1728 (2008) Tay, T.-S.: Lower-bound theorems for pseudomanifolds. Discrete Comput. Geom. 13(2), 203–216 (1995) Tay, T.-S., White, N., Whiteley, W.: Skeletal rigidity of simplicial complexes. II. Eur. J. Comb. 16(5), 503–523 (1995) Walkup, D.: The lower bound conjecture for \(3\)- and \(4\)-manifolds. Acta Math. 125, 75–107 (1970) Whiteley, W.: Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc. 285(2), 431–465 (1984) Zheng, H.: A characterization of homology manifolds with \(g_2\le 2\). J. Comb. Theory Ser. A 153, 31–45 (2018) Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)